

Project funded by

European Commission Erasmus + Programme –Jean Monnet Action

Project number 553280-EPP-1-2015-1-IT-EPPJMO-MODULE

# Spatial distribution dynamics: an application

M. Gerolimetto S. Magrini

Department of Economics - University Ca' Foscari of Venice

Pisa, October 23, 2017

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Spatial distribution dynamics: an application

M. Gerolimetto S. Magrini

Introduction

motivation

Data issues

data cycle

DD analysis cvm dpi

Conclusions

# Motivation and outline of the study

### Motivation:

- it is quite common in convergence analyses across spatial units (countries, regions) that data exhibit strong spatial dependence
- neglecting spatial dependence may affect the results
- ⇒ employ SNP within the distribution dynamics approach for the analysis of cross-sectional convergence when data are spatially dependent

### Outline

- present data and discuss potential bias from cyclical dynamics
- analyze convergence among US states

Spatial distribution dynamics: an application

> A. Gerolimetto S. Magrini

Introduction

motivation

Data issues

data cycle

DD analysis cvm dpi

Conclusions

### Data

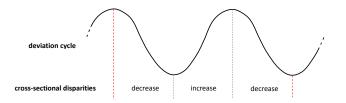
### USA context

- 48 coterminous US states
- quarterly data on personal per capita income (1971:Q1-2010:Q4)
- orthodromic distance between state capitals

Allow for short-run, cyclical dynamics (Magrini, Gerolimetto and Duran, 2013; Gerolimetto and Magrini, 2014)

- the object of interest to convergence analysts is, essentially, the evolution of potential output
- measured output is a noisy indicator of potential output, contaminated by business cycle dynamics

Spatial distribution dynamics: an application


Gerolimetto
S. Magrini

Introduction motivation Data issues data cycle DD analysis cvm dpi Conclusions

# Bias from cyclical dynamics

Suppose:

- regional disparities follow a pro-cyclical pattern
  - $\Rightarrow\,$  increase during expansions and diminish during slowdowns
- the period of analysis contains more slowdowns than expansions



⇒ biased results due to an over-representation of the dynamics towards convergence Spatial distribution dynamics: an application

> A. Gerolimetto S. Magrini

Introduction motivation Data issues data cycle

DD analysis cvm dpi

Conclusions

## Solution to cyclical dynamics

In fact, policy makers need to discriminate between:

- a short-run component of the disparities (bound to vanish)
- a long-run one (possibly requiring structural intervention)
- ⇒ the true object of interest is the evolution of (relative) potential output
  - apply the Hodrick-Prescott filter to each regional time series to filter out short-run fluctuations
    - $\to$   $\lambda$  (parameter controlling the degree of smoothness of the estimated trend) large enough to allow for all cyclical swings
  - choose any two points in time and study convergence on HP-filtered data
    - $\rightarrow\,$  focus on the period between two major economic crises: 1981:Q1-2007:Q2

Spatial distribution dynamics: an application

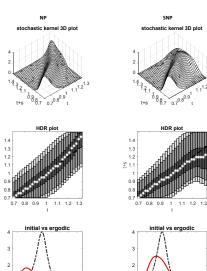
> M. Gerolimetto S. Magrini

Introduction motivation Data issues data cycle DD analysis cvm dpi Conclusions

### 1981:Q1-2007:Q2 with cross-validation minimization bandwidth

Spatial distribution dynamics: an application

Introduction


motivation

Data issues

data cycle

DD analysis

Conclusions



0.70.80.9 1 1.11.21.31.4

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



Spatial distribution dynamics: an application

> M. Gerolimetto S. Magrini

### Table: Results

|                     | Moran's I | <i>p</i> -value |
|---------------------|-----------|-----------------|
| observed initial    | 0.1993    | 0.0066          |
| observed final      | 0.2877    | 0.0001          |
| filtered initial    | 0.2206    | 0.0029          |
| filtered final      | 0.3030    | 0.0001          |
| residuals NP        | 0.4694    | 0.0000          |
| residuals SNP       | -0.0938   | 0.3627          |
|                     |           |                 |
|                     | CV        | IR              |
| HP-filtered initial | 0.1427    | 0.2144          |
| HP-filtered final   | 0.1730    | 0.2382          |
| ergodic NP          | 0.2189    | 0.4257          |
| ergodic SNP         | 0.1819    | 0.2492          |

#### Table: Estimated half-life values

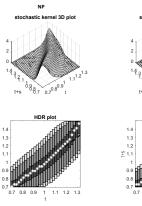
| ergodic via NP | ergodic via SNP |
|----------------|-----------------|
| 7.3949         | 2.6620          |

#### Introduction

motivation

Data issues

data cycle


DD analysis

cvm dni

Conclusions

#### (ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

# 1981:Q1-2007:Q2 with direct plug-in bandwidth











Spatial distribution dynamics: an application

> A. Gerolimetto S. Magrini

Introduction

motivation

Data issues

data cycle

DD analysis cvm

Conclusions

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへで

Spatial distribution dynamics: an application

> M. Gerolimetto S. Magrini

### Table: Results

|                     | Moran's I | <i>p</i> -value |
|---------------------|-----------|-----------------|
| observed initial    | 0.1993    | 0.0066          |
| observed final      | 0.2877    | 0.0001          |
| filtered initial    | 0.2206    | 0.0029          |
| filtered final      | 0.3030    | 0.0001          |
| residuals NP        | 0.4635    | 0.0000          |
| residuals SNP       | -0.0360   | 0.8528          |
|                     |           |                 |
|                     | CV        | IR              |
| HP-filtered initial | 0.1427    | 0.2144          |
| HP-filtered final   | 0.1730    | 0.2382          |
| ergodic NP          | 0.1817    | 0.2476          |
| ergodic SNP         | 0.2186    | 0.4627          |

#### Table: Estimated half-life values

| ergodic via NP | ergodic via SNP |
|----------------|-----------------|
| 9.5737         | 2.6622          |

#### Introduction

motivation

Data issues

data cycle

DD analysis

Conclusions

#### (ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

# Conclusions

Overall, we find

- evidence of a very strong process of divergence using NP to estimate the mean function
  - $\rightarrow\,$  the ergodic distribution is clearly bimodal
- strong spatial dependence in data and NP regression residuals
- evidence of a weak moderate process of divergence using SNP to estimate the mean function
  - $\rightarrow\,$  no signs of bimodality in the ergodic distribution
- strong spatial dependence in data but no evidence of spatial dependence in SNP regression residuals
- results are robust to the choice of bandwidth

Specifically, results show that

- neglecting spatial dependence might affect the results
- the bias is particularly strong in the analysed period (1981:Q1-2007:Q2) stretching between two major crises

Spatial distribution dynamics: an application

> A. Gerolimetto S. Magrini

Introduction motivation Data issues data cycle DD analysis cvm dpi Conclusions