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Econometric model of convergence

Hypothesis of absolute convergence with linear model: β < 0

gY /L = intercept + β log (Y /Li ,1991) + ǫi (1)

Dependent variable:

c(averageGrowthRateSingleRegions)

LogGDPpwRel initialYear −0.014∗∗∗

(0.001)
Constant 0.015∗∗∗

(0.001)

Observations 257
R2 0.506
Adjusted R2 0.504
Residual Std. Error 0.010 (df = 255)
F Statistic 261.512∗∗∗ (df = 1; 255)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Some Remarks on Generalize Additive Models (GAMs)

A generalize additive model is a generalized linear model with a linear predictor involving
a smooth function of the covariate:

yi = s(xi ) + ǫi (2)

where yi is the response variable, xi the covariate, s(·) a smooth function and ǫi are i.i.d.
N(0, σ2).
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Some Remarks on Generalize Additive Models (GAMs)

A generalize additive model is a generalized linear model with a linear predictor involving
a smooth function of the covariate:

yi = s(xi ) + ǫi (2)

where yi is the response variable, xi the covariate, s(·) a smooth function and ǫi are i.i.d.
N(0, σ2).
To estimate s(·), let represent it is such a way that Eq. (2) becomes a linear model by
choosing a basis function:

s(x) =

q∑
j=1

bj (x)βj (3)

for some values of the unknown parameters.
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A generalize additive model is a generalized linear model with a linear predictor involving
a smooth function of the covariate:

yi = s(xi ) + ǫi (2)

where yi is the response variable, xi the covariate, s(·) a smooth function and ǫi are i.i.d.
N(0, σ2).
To estimate s(·), let represent it is such a way that Eq. (2) becomes a linear model by
choosing a basis function:

s(x) =

q∑
j=1

bj (x)βj (3)

for some values of the unknown parameters.

For example, consider a 4th order polynomial where
b1(x) = 1, b2(x) = x , b3(x) = x2, b4(x) = x3, b5(x) = x4, so that Eq.(3) becomes:

s(x) = β1 + xβ2 + x
2
β3 + x

3
β4 + x

4
β5. (4)
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Some Remarks on Generalize Additive Models: Cont.

Polynomial bases have some problems in estimating on the whole domain
of x . Alternatively, the spline bases perform well.
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Some Remarks on Generalize Additive Models: Cont.

Polynomial bases have some problems in estimating on the whole domain
of x . Alternatively, the spline bases perform well.

A cubic spline is a curve, made up of sections of cubic polynomial, joined
together so that they are continuous in value as well as first and second
derivatives. The points at which the sections join are known as the knots
of the spline.

Knots must be chosen!
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Some Remarks on Generalize Additive Models: Cont.

Given knot location, how do we choose the degree of smoothing (i.e. the basis
dimension)?

One way, is to keep the basis dimension fixed, at a size a little larger than it is believed
could reasonably be necessary, but to control the models smoothness by adding a
wiggliness penalty to the least squares fitting objective.
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Given knot location, how do we choose the degree of smoothing (i.e. the basis
dimension)?

One way, is to keep the basis dimension fixed, at a size a little larger than it is believed
could reasonably be necessary, but to control the models smoothness by adding a
wiggliness penalty to the least squares fitting objective.

For example, rather than fitting the model by minimizing:

‖ y − Xβ ‖2 (5)

it could be fit by minimizing,

‖ y − Xβ ‖2 +λ

∫
[s ′′(x)]dx (6)

where the integrated square of second derivative penalizes models that are too wiggly.
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Some Remarks on Generalize Additive Models: Cont.

Given knot location, how do we choose the degree of smoothing (i.e. the basis
dimension)?

One way, is to keep the basis dimension fixed, at a size a little larger than it is believed
could reasonably be necessary, but to control the models smoothness by adding a
wiggliness penalty to the least squares fitting objective.

For example, rather than fitting the model by minimizing:

‖ y − Xβ ‖2 (5)

it could be fit by minimizing,

‖ y − Xβ ‖2 +λ

∫
[s ′′(x)]dx (6)

where the integrated square of second derivative penalizes models that are too wiggly.
The trade off between model fit and model smoothness is controlled by the smoothing

parameter, λ. λ → ∞ leads to a straight line estimate for s, while λ = 0 results in an
un-penalized regression spline estimate.
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Some Remarks on Generalize Additive Models: Cont.

Given that s is linear in parameters β the penalty can be written as a
quadratic form:

λ

∫

[s ′′(x)]dx = β′Sβ (7)

where S is a matrix of known coefficients.

Therefore the penalized regression spline problem is to minimize:

‖ y −Xβ ‖2 +λβ′Sβ (8)

→ β̂ = (X′X+ λS′)−1X′y (9)

λ must be chosen!! Too high λ leads to over-smoothing while too low λ
to under-smoothing → generalized cross-validation.
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Some Remarks on Generalize Additive Models: Cont.

Both with the over-smoothing (too high λ) and the under-smoothing (too
low λ) the spline estimate f̂ will not be close to the true function f .

Ideally, it would be good to choose λ so that f̂ is as close as possible to f .

A suitable criterion might be to choose λ to minimize:

M =
1

n

n
∑

i=1

(f̂i − fi)
2 (10)

Problem: f is no observable!
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Some Remarks on Generalize Additive Models: Cont.

It is possible to derive an estimate of E (M) + σ2 which is the expected
squared error in predicting a new variable.

Let f̂ −i be the model fitted to all data except yi and define the ordinary

cross validation score:

V0 =
1

n

n
∑

i=1

(

f̂ −i − yi

)2
(11)

This score results from leaving one out each datum in turn, fitting the
model to the remaining data and calculating the squared difference
between the missing datum and its predicted value: these suared
differences are the averaged over all data
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Some Remarks on Generalize Additive Models: Cont.

It is computationally inefficient to calculate V0 by leaving one out one
datum at a time, and fitting the model to each of the n resulting datasets.

But it can be shown that:

V0 =
1

n

n
∑

i=1

(yi − f̂i )
2/(1 − Aii)

2 (12)

where f̂ is the estimate from fitting all the data and A is the
corresponding influence matrix.

In practice, the weights (1− Aii) are often replaced by the mean weights
tr(I − A)/n, in order to arrive at the generalized cross validation.
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Some Remarks on Generalize Additive Models: Cont.

When we have and additive model with more than one covariate as for
example:

yi = s1(xi ) + s2(zi ) + ǫi (13)

the parameters β are obtained by minimization of the penalized least
squares objective:

‖ y − Xβ ‖2 +λ1β
′S1β + λ2β

′S2β (14)
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Econometric model of convergence (cont.d)

Hypothesis of absolute convergence with a nonparametric model: s ′ < 0

gY /L = intercept + s (log (Y /Li ,1991)) + ǫi (15)

Parametric coeff.:
Estimate Std. Error t-Stat P-value

(Intercept) 0.0175179 0.0006103 28.7 < 2e−16 ***

Smooth terms: edf Ref.df F p-value

s(LogGDPpwRel initialYear) 8.722 8.978 37.97 < 2e−16 ***

R-sq.(adj)=0.565; Dev.expl.=58%
GCV=9.948e−05 ; Scale est.=9.5717e−05 ; n=257
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Figura: Absolute convergence in the GDP per worker. Parametric and
nonparametric regression
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Conditional convergence

Hypothesis of conditional convergence with linear model: β0 < 0

gY /L = intercept + β0 log (Y /Li ,1991) + β1s̄ + β2n̄ + β3h̄ + ǫi (16)

Dependent variable:

c(averageGrowthRateSingleRegions)

LogGDPpwRel initialYear −0.015∗∗∗

(0.001)
log(mean invRate) 0.003

(0.003)
log(mean empGR augm) −0.015∗∗∗

(0.003)
log(mean hc index) 0.020∗∗∗

(0.002)
Constant −0.093∗∗∗

(0.012)

Observations 257

R2 0.641

Adjusted R2 0.635
Residual Std. Error 0.009 (df = 252)
F Statistic 112.557∗∗∗ (df = 4; 252)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Conditional convergence

Hypothesis of conditional convergence with a nonparametric model: s ′0 < 0

gY /L = intercept + s0 (log (Y /Li ,1991)) + s1 (s̄) + s2 (n̄) + s3
(

h̄
)

+ ǫi (17)

Parametric coeff.: Estimate Std. Error t-Stat P-value

(Intercept) 0.0175179 0.0004611 37.99 < 2e−16 ***

Smooth terms: edf Ref.df F p-value

s(LogGDPpwRel initialYear) 8.641 8.963 39.175 < 2e−16 ***
s(log(mean invRate)) 5.392 6.582 1.722 0.109
s(log(mean empGR augm)) 8.595 8.95 5.644 < 2e−16 ***
s(log(mean hc index)) 1.235 1.434 80 < 2e−16 ***

R-sq.(adj)=0.752; Dev.expl.=77.5%
GCV=6.0497e−05 ; Scale est.=5.4645e−05 ; n=257
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Figura: Estimate of generalized additive model.
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