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Estimate of The Density Function

Let be x a continuous random variable and f its probability density
function (pdf).
The pdf characterizes the distribution of the random variable x since it
tells “how x is distributed”.
Moreover, from pdf it is possible to calculate the mean and the variance
(it they exists) of x and the probability that x takes on values in a given
interval.
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Histogram

Histograms are nonparametric estimates of an unknown density function,
f (x), without assuming any well-known functional form. In order to
build an histogram, you have to:

1 select an origin x0 and divide the real line into “bin” of binwidth h:

Bj = [x0 + (j − 1)h, x0 + jh], j ∈ Z;
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Histogram

Histograms are nonparametric estimates of an unknown density function,
f (x), without assuming any well-known functional form. In order to
build an histogram, you have to:

1 select an origin x0 and divide the real line into “bin” of binwidth h:

Bj = [x0 + (j − 1)h, x0 + jh], j ∈ Z;

2 count how many observations fall into each bin (nj for each bin j);

3 for each bin divide the frequency by the sample size n and the
binwidth h, to get the relative frequencies fj =

nj
nh
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Histogram: Cont.
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Histogram: Cont.

Crucial parameter: the binwidth h

A higher binwidth produces smoother estimates
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Thus, it is not possible to choose h in order to have a small bias and
a small variance
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Histogram: Cont.

Crucial parameter: the binwidth h

A higher binwidth produces smoother estimates

The estimate is biased and that the bias is positively related to h,
while the variance of the estimate is negatively related to h

Thus, it is not possible to choose h in order to have a small bias and
a small variance

→ we need to find an “optimal”binwidth, which represents an optimal
compromise.
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Histogram: Cont.

Problems with the histogram:
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Histogram: Cont.

Problems with the histogram:

1 each observation x in [mj −
h
2
,mj +

h
2
) is estimated by the same

value, f̂h(mj ), where mj is the center of the bin;
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Histogram: Cont.

Problems with the histogram:

1 each observation x in [mj −
h
2
,mj +

h
2
) is estimated by the same

value, f̂h(mj ), where mj is the center of the bin;

2 f (x) is estimated using the observations that fall in the interval
containing x , and that receive the same weight in the estimation.
That is, for x ∈ Bj ,

f̂h(mj ) =
1

nh

n
∑

i=1

I (Xi ∈ Bj),

where I is the indicator function.
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Nonparametric density estimation

Density estimation is a generalization of the histogram.
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Nonparametric density estimation

Density estimation is a generalization of the histogram.

It is based on Kernel functions: estimate f (x) using the
observations that fall into an interval around x , which (typically)
receive decreasing weight the further they are from x .
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Kernel functions

Consider the uniform kernel function, which assigns the same weight to all observations

in an interval of length 2h around observation x , [x − h, x + h):

f̂h(x) =
1

2nh
♯{Xi ∈ [x − h, x + h)}

can be obtained by means of a kernel function K(u) such that:

K(u) =
1

2
I (|u| ≤ 1)

where I is the indicator function and u = (x − Xi )/h.
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Kernel functions

Consider the uniform kernel function, which assigns the same weight to all observations

in an interval of length 2h around observation x , [x − h, x + h):

f̂h(x) =
1

2nh
♯{Xi ∈ [x − h, x + h)}

can be obtained by means of a kernel function K(u) such that:

K(u) =
1

2
I (|u| ≤ 1)

where I is the indicator function and u = (x − Xi )/h.

It assigns weight 1/2 to each observation Xi whose distance from x , the point
where we want to estimate the density, is not bigger than h.

For each observation that falls into the interval [x − h, x + h) the indicator
function takes on value 1

Each contribution to the function is weighted equally no matter how close the
observation Xi is to x
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Kernel functions: Cont.

A Kernel function in general (e.g. Epanechnikov, Gaussian, etc), assigns
higher weights to observations in [x − h, x + h) closer to x .
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Kernel density

A kernel density estimation appears as a sum of bumps: at a given x , the value of f̂h(x)
is found by vertically summing over the “bumps”:

f̂h(x) =

n∑

i=1

1

nh
K

(
x − Xi

h

)

=

n∑

i=1

1

n
Kh(x − Xi )
︸ ︷︷ ︸

“rescaled kernel function”
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Properties of Kernel density estimator

Same problems found for the histogram, that is the bias and the variance
depending on h, also hold for the Kernel:

Bias{f̂h(x)} = E{f̂h(x)} − f (x);

that positively depends on h;

Var{f̂h(x)} = Var

{

n
∑

i=1

1

n
Kh(x − Xi)

}

;

that negatively depends on h.
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Properties of Kernel density estimator

Same problems found for the histogram, that is the bias and the variance
depending on h, also hold for the Kernel:

Bias{f̂h(x)} = E{f̂h(x)} − f (x);

that positively depends on h;

Var{f̂h(x)} = Var

{

n
∑

i=1

1

n
Kh(x − Xi)

}

;

that negatively depends on h.
So, how do we choose h given the trade-off between bias and variance?
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Choosing the bandwidth h

(a) Define MSE (mean squared error)

MSE{f̂h(x)} = E [{f̂h(x)− f (x)}2]

. . .

MSE{f̂h(x)} = Var{f̂h(x)}+ [Bias{f̂h(x)}]
2

→ minimizing MSE may solve the trade-off, but hopt depends on f (x) and f ′′(x),
which are unknown.
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(a) Define MSE (mean squared error)

MSE{f̂h(x)} = E [{f̂h(x)− f (x)}2]

. . .

MSE{f̂h(x)} = Var{f̂h(x)}+ [Bias{f̂h(x)}]
2

→ minimizing MSE may solve the trade-off, but hopt depends on f (x) and f ′′(x),
which are unknown.

(b) Define MISE (mean integrated squared error), global measure:

MISE{f̂h(x)} = E

[∫
∞

−∞

{f̂h(x) − f (x)}2dx

]

=

∫
∞

−∞

MSE{f̂h(x)}dx

(c) Define AMISE (an approximation of MISE) → still hopt depends on the unknown
f (x), in particular on its second derivative f ′′(x).

(d) One possibility is a plug-in method suggested by Silverman, and consists in
assuming that the unknown function is a Gaussian density function (whose
variance is estimated by the sample variance). In this case hopt has a simple
formulation, and can be defined as a rule-of-thumb bandwidth.
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Adaptive Kernel

Up to know we have seen the possibility of giving higher weights to
the observations whose distance from x , the point where we want to
estimate the density, is not bigger than h → assuming only one h!
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Adaptive Kernel

Up to know we have seen the possibility of giving higher weights to
the observations whose distance from x , the point where we want to
estimate the density, is not bigger than h → assuming only one h!

But we can get a better estimate by allowing the window width of the
kernels to vary from one point to another.

In particular, a natural way to deal with long-tailed densities is to use
a broader kerne I in regions of low density.

Thus an observation in the tail would have its mass smudged out over
a wider range than one in the main part of the distribution.
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Adaptive Kernel: Cont.

A practical problem is deciding in the first place whether or not an
observation is in a region of low density
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two-stage procedure:
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Adaptive Kernel: Cont.

A practical problem is deciding in the first place whether or not an
observation is in a region of low density

The adaptive kernel approach copes with this problem by means of a
two-stage procedure:

1 get an initial estimate to have a rough idea of the density
2 use the former density to get a pattern of bandwidths corresponding to

various observations to be used in a second estimate
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Adaptive Kernel: Cont.

In particular:

Step 1 Find a pilot estimate f̃ (x) that satisfies f̃ (xi ) > 0 ∀i
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Adaptive Kernel: Cont.

In particular:

Step 1 Find a pilot estimate f̃ (x) that satisfies f̃ (xi ) > 0 ∀i

Step 2 Define local bandwidth factor λi by:

λi = [f̃ (xi )/g ]
−α (1)

where g is the geometric mean of the f̃ (xi ), log g = n−1
∑

log f̃ (xi );
and α the sensitivity parameter (α ≤ 0)
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Adaptive Kernel: Cont.

In particular:

Step 1 Find a pilot estimate f̃ (x) that satisfies f̃ (xi ) > 0 ∀i

Step 2 Define local bandwidth factor λi by:

λi = [f̃ (xi )/g ]
−α (1)

where g is the geometric mean of the f̃ (xi ), log g = n−1
∑

log f̃ (xi );
and α the sensitivity parameter (α ≤ 0)

Step 3 Define the adaptive kernel estimate f̂ (x) by:

f̂ (x) = nh−1
∑

λ−1

i K{h−1λ−1

i (x − Xi)} (2)
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Bootstrap

The bootstrap technique allows estimation of the population
distribution by using the information based on a number of resamples
from the sample.
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Bootstrap: Cont.

Use the information of a number of resamples from the sample to
estimate the population distribution
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Bootstrap: Cont.

Use the information of a number of resamples from the sample to
estimate the population distribution

Procedure:
Given a sample of size n:

Treat the sample as population
Draw B samples of size n with replacement from your sample (the
bootstrap samples)
Compute for each bootstrap sample the statistic of interest
Estimate the sample distribution of the statistic by the bootstrap
sample distribution
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Bootstrap: Cont.

Basic idea: If the sample is a good approximation of the population,
bootstrapping will provide a good approximation of the sample
distribution.
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Basic idea: If the sample is a good approximation of the population,
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1 If the sample is representative for the population, the sample

distribution (empirical distribution) approaches the population
(theoretical) distribution if n increases;

Brunetti-Fiaschi-Parenti Quantitative Economics 04/10/2016 19 / 21



Bootstrap: Cont.

Basic idea: If the sample is a good approximation of the population,
bootstrapping will provide a good approximation of the sample
distribution.

Justification:
1 If the sample is representative for the population, the sample

distribution (empirical distribution) approaches the population
(theoretical) distribution if n increases;

2 If the number of resamples (B) from the original sample increases, the
bootstrap distribution approaches the sample distribution.
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Bootstrap Procedure for Confidence Bands

Given a sample of observations X = {X1, ...,Xm} where each Xi is a
vector of dimension n the bootstrap algorithm is the following.
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Bootstrap Procedure for Confidence Bands

Given a sample of observations X = {X1, ...,Xm} where each Xi is a
vector of dimension n the bootstrap algorithm is the following.

1 Estimate from sample x the density f̂ .
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Bootstrap Procedure for Confidence Bands

Given a sample of observations X = {X1, ...,Xm} where each Xi is a
vector of dimension n the bootstrap algorithm is the following.

1 Estimate from sample x the density f̂ .

2 Select B independent bootstrap samples {X ∗1, ...,X ∗B}, each
consisting of n data values drawn with replacement from x .
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Bootstrap Procedure for Confidence Bands

Given a sample of observations X = {X1, ...,Xm} where each Xi is a
vector of dimension n the bootstrap algorithm is the following.

1 Estimate from sample x the density f̂ .

2 Select B independent bootstrap samples {X ∗1, ...,X ∗B}, each
consisting of n data values drawn with replacement from x .

3 Estimate the density f̂ ∗b corresponding to each bootstrap sample
b = 1, ...,B .

The distribution of f̂ ∗ about f̂ can therefore be used to mimic the
distribution of f̂ about f , that is it can be used to calculate the confidence
intervals for estimates.
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