# Quantitative Economics for the Evaluation of the European Policy

Dipartimento di Economia e Management

Co-funded by the Erasmus+ Programme of the European Union



Project funded by

European Commission Erasmus + Programme –Jean Monnet Action

Project number 553280-EPP-1-2015-1-IT-EPPJMO-MODULE

#### Irene Brunetti Davide Fiaschi Angela Parenti<sup>1</sup>

#### 17/10/2016

<sup>1</sup>ireneb@ec.unipi.it, davide.fiaschi@unipi.it, and aparenti@ec.unipi.it. > < > > > >

Brunetti-Fiaschi-Parenti

Quantitative Economics

17/10/2016 1 / 14

$$\overline{g_{Y/L_i}} = intercept + \beta_0 \log \left( Y/L_{i,1991} \right) + \beta_1 \overline{s}_i + \beta_2 \overline{n}_i + \beta_3 \overline{h}_i + \epsilon_i \qquad (1)$$

|             | Estimate                                        | Std. Error | t-Stat. | P-value |
|-------------|-------------------------------------------------|------------|---------|---------|
| (Intercept) | -0.0929                                         | 0.0123     | -7.53   | 0.0000  |
| $\beta_0$   | -0.0154                                         | 0.0011     | -14.57  | 0.0000  |
| $\beta_1$   | 0.0027                                          | 0.0029     | 0.93    | 0.3532  |
| $\beta_2$   | -0.0146                                         | 0.0034     | -4.31   | 0.0000  |
| $\beta_3$   | 0.0204                                          | 0.0024     | 8.57    | 0.0000  |
|             | Res.se=0.008956 (255) DF                        |            |         |         |
|             | R-squared=0.6411, Adj.R-squared=0.6354          |            |         |         |
|             | F-stat.=112.6 (1,255) DF, p-value= $< 2e^{-16}$ |            |         |         |

Brunetti-Fiaschi-Parenti

17/10/2016 2 / 14

## Endogeneity in cross-region regression

#### Simultaneity Problem

The fact that the right-hand-side variables are not exogenous, but are **jointly determined with the growth rate** (for example the level of investment is highly correlated with growth).

- Estimation issue: estimates can be biased.
- Identification issue: the value of  $\beta$  can fail to illustrate how initial conditions affect expected future income differences if the saving rate is itself function of income. Hence,  $\beta \ge 0$  may be compatible with at least partial convergence, while  $\beta < 0$  with economic divergence if physical and human capital accumulation for rich and poor are diverging across time.

< < >> < <</p>

## Endogeneity in cross-region regression

#### Measurement Error

In this case we would like to measure the (partial) effect of a variable but we can **observe only an imperfect measure**  $\Rightarrow$  we introduce measurement error.

## Endogeneity in cross-region regression

#### Measurement Error

In this case we would like to measure the (partial) effect of a variable but we can **observe only an imperfect measure**  $\Rightarrow$  we introduce measurement error.

#### **Omitted Variables**

Omitted variables appear when we would like to control for one or more additional variables but, usually because of data unavailability, we cannot include them in a regression model.  $\Rightarrow$  one way to represent this situation

is to write the regression equation considering the omitted variable as part of the error term.

Consider the linear model:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_K x_K + u$$
 (2)

$$E(u) = 0, \ Cov(x_j, u) = 0, \ j = 1, 2, ..., K - 1$$
 (3)

therefore  $x_K$  might be correlated with u. In other words,  $x_1, ..., x_{K-1}$  are exogenous while  $x_K$  is potentially endogenous

Consider the linear model:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_K x_K + u$$
 (2)

$$E(u) = 0, \ Cov(x_j, u) = 0, \ j = 1, 2, ..., K - 1$$
 (3)

therefore  $x_K$  might be correlated with u. In other words,  $x_1, ..., x_{K-1}$  are exogenous while  $x_K$  is potentially endogenous

 $\Rightarrow$  OLS estimation generally results in **inconsistent** estimators of all the  $\beta_j$  if  $Cov(x_K, u) \neq 0$ 

The method of instrumental variables (IV) provides a general solution to the problem of an endogenous explanatory variable. To use the IV approach with  $x_{\mathcal{K}}$  endogenous, we need an observable variable,  $z_1$ , not in equation (3) that satisfies two conditions:

The method of instrumental variables (IV) provides a general solution to the problem of an endogenous explanatory variable. To use the IV approach with  $x_K$  endogenous, we need an observable variable,  $z_1$ , not in equation (3) that satisfies two conditions:

•  $z_1$  must be uncorrelated with u:  $Cov(z_1, u) = 0 \Rightarrow z_1$  is exogenous

The method of instrumental variables (IV) provides a general solution to the problem of an endogenous explanatory variable. To use the IV approach with  $x_{\mathcal{K}}$  endogenous, we need an observable variable,  $z_1$ , not in equation (3) that satisfies two conditions:

- $z_1$  must be uncorrelated with u:  $Cov(z_1, u) = 0 \Rightarrow z_1$  is exogenous
- The second requirement involves the relationship between  $z_1$  and the endogenous variable,  $x_K$ . Consider the regression of  $x_K$  on all the exogenous variables:

$$x_{\mathcal{K}} = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \dots + \delta_{\mathcal{K}-1} x_{\mathcal{K}-1} + \theta_1 z_1 + e_{\mathcal{K}}$$
(4)

where  $E(e_{\mathcal{K}}) = 0$  and  $e_{\mathcal{K}}$  is uncorrelated with  $x_1, ..., x_{\mathcal{K}-1}$  and  $z_1 \Rightarrow \theta_1 \neq 0$ 

17/10/2016 6 / 14

The method of instrumental variables (IV) provides a general solution to the problem of an endogenous explanatory variable. To use the IV approach with  $x_{\mathcal{K}}$  endogenous, we need an observable variable,  $z_1$ , not in equation (3) that satisfies two conditions:

- $z_1$  must be uncorrelated with u:  $Cov(z_1, u) = 0 \Rightarrow z_1$  is exogenous
- The second requirement involves the relationship between *z*<sub>1</sub> and the endogenous variable, *x*<sub>K</sub>. Consider the regression of *x*<sub>K</sub> on *all* the exogenous variables:

$$x_{\mathcal{K}} = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \dots + \delta_{\mathcal{K}-1} x_{\mathcal{K}-1} + \theta_1 z_1 + e_{\mathcal{K}}$$
(4)

where  $E(e_{\mathcal{K}}) = 0$  and  $e_{\mathcal{K}}$  is uncorrelated with  $x_1, ..., x_{\mathcal{K}-1}$  and  $z_1 \Rightarrow \theta_1 \neq 0$ 

 $z_1$  is an **instrumental variable** candidate for  $x_K$ !

イロト 不得 とくほ とくほ とうほう

# Two-stage least squares (2SLS) estimator

Under certain assumptions, the two-stage least squares (2SLS) estimator is the most efficient IV estimator:

# Two-stage least squares (2SLS) estimator

Under certain assumptions, the two-stage least squares (2SLS) estimator is the most efficient IV estimator:

**Obtain the fitted** values  $\hat{x}_{\mathcal{K}}$  from the regression:

$$x_{\mathcal{K}} = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \dots + \delta_{\mathcal{K}-1} x_{\mathcal{K}-1} + \theta_1 z_1 + e_{\mathcal{K}}$$
(5)

This is called **first-stage regression**.

# Two-stage least squares (2SLS) estimator

Under certain assumptions, the two-stage least squares (2SLS) estimator is the most efficient IV estimator:

**Obtain the fitted** values  $\hat{x}_{\mathcal{K}}$  from the regression:

$$x_{\mathcal{K}} = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \dots + \delta_{\mathcal{K}-1} x_{\mathcal{K}-1} + \theta_1 z_1 + e_{\mathcal{K}}$$
(5)

This is called **first-stage regression**.

2 Run the OLS regression

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_K \hat{x}_K + u \tag{6}$$

This is called the **second-stage regression**, and it produces the  $\hat{\beta}_i$ 

17/10/2016 7 / 14

## **Control Function**

• For handling endogeneity in nonlinear models we must use a different approach, i.e. the **control function** (CF).

(日) (同) (三) (三)

### **Control Function**

- For handling endogeneity in nonlinear models we must use a different approach, i.e. the **control function** (CF).
- CF uses extra regressors to break the correlation between endogenous explanatory variables and unobservables affecting the dependent variable.

(日) (同) (三) (三)

## **Control Function**

- For handling endogeneity in nonlinear models we must use a different approach, i.e. the **control function** (CF).
- CF uses extra regressors to break the correlation between endogenous explanatory variables and unobservables affecting the dependent variable.
- The method still relies on the availability of exogenous variables that do not appear in the structural equation

Consider the linear model:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_K x_K + u \tag{7}$$

$$E(u) = 0, \ Cov(x_j, u) = 0, \ j = 1, 2, ..., K - 1$$
 (8)

therefore  $x_K$  might be correlated with u. In other words,  $x_1, ..., x_{K-1}$  are exogenous while  $x_K$  is potentially endogenous.

(ロ) (型) (三) (三) (三) (2)

Consider the linear model:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_K x_K + u \tag{7}$$

$$E(u) = 0, \ Cov(x_j, u) = 0, \ j = 1, 2, ..., K - 1$$
 (8)

therefore  $x_K$  might be correlated with u. In other words,  $x_1, ..., x_{K-1}$  are exogenous while  $x_K$  is potentially endogenous. The *reduced form* of  $x_K$  is

the linear projection of  $x_K$  onto the exogenous variables (and the instruments):

$$x_{\mathcal{K}} = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \dots + \delta_{\mathcal{K}-1} x_{\mathcal{K}-1} + \theta_1 z_1 + e_{\mathcal{K}}$$
(9)

with  $Cov(x_j, e_K) = 0$ , j = 1, 2, ..., K - 1 and  $Cov(z_1, e_K) = 0$ .

◆ロ → ◆母 → ◆臣 → ◆臣 → ◆ ● ◆ ◆ ◆ ● ◆

Endogeneity arises if and only if u is correlated with  $e_{\mathcal{K}}$ !

イロト 不得 とくほ とくほ とうほう

Endogeneity arises if and only if u is correlated with  $e_{\mathcal{K}}$ !

Write the linear projection of u on  $e_K$  as:

$$u = \rho e_{\mathcal{K}} + \epsilon \tag{10}$$

By definition,  $Cov(e_K, \epsilon) = 0$ ,  $Cov(x_j, \epsilon) = 0$  and  $Cov(z_1, \epsilon) = 0$  because u and  $e_K$  are both uncorrelated with  $x_j j = 1, ..., K_1$  and  $z_1$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Endogeneity arises if and only if u is correlated with  $e_{K}$ !

Write the linear projection of u on  $e_K$  as:

$$u = \rho e_{\mathcal{K}} + \epsilon \tag{10}$$

By definition,  $Cov(e_K, \epsilon) = 0$ ,  $Cov(x_j, \epsilon) = 0$  and  $Cov(z_1, \epsilon) = 0$  because u and  $e_K$  are both uncorrelated with  $x_j j = 1, ..., K_1$  and  $z_1$ .

Pluggin (9) in (6) we get:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_K x_K + \rho e_K + \epsilon$$
(11)

where now  $e_K$  can be viewed as an explanatory variable in the equation, and  $Cov(y, \epsilon) = 0$ .

(日) (同) (三) (三) (三) (○)

Endogeneity arises if and only if u is correlated with  $e_{\mathcal{K}}$ !

Write the linear projection of u on  $e_K$  as:

$$u = \rho e_{\mathcal{K}} + \epsilon \tag{10}$$

By definition,  $Cov(e_K, \epsilon) = 0$ ,  $Cov(x_j, \epsilon) = 0$  and  $Cov(z_1, \epsilon) = 0$  because u and  $e_K$  are both uncorrelated with  $x_j j = 1, ..., K_1$  and  $z_1$ .

Pluggin (9) in (6) we get:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_K x_K + \rho e_K + \epsilon$$
(11)

where now  $e_K$  can be viewed as an explanatory variable in the equation, and  $Cov(y, \epsilon) = 0$ .

 $\Rightarrow$  run OLS of y on  $x_j j = 1, ..., K_1$ ,  $z_1$  and  $e_K$  using random sample.

Problem: *e<sub>K</sub>* **not observable**!!

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Problem: *e<sub>K</sub>* **not observable**!!

• From 
$$x_{\mathcal{K}} = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \ldots + \delta_{\mathcal{K}-1} x_{\mathcal{K}-1} + \theta_1 z_1 + e_{\mathcal{K}}$$
 we get:

$$e_{\mathcal{K}} = x_{\mathcal{K}} - (\delta_0 + \delta_1 x_1 + \delta_2 x_2 + \dots + \delta_{\mathcal{K}-1} x_{\mathcal{K}-1} + \theta_1 z_1)$$
(12)

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Problem: e<sub>K</sub> not observable!!

• From 
$$x_{K} = \delta_{0} + \delta_{1}x_{1} + \delta_{2}x_{2} + ... + \delta_{K-1}x_{K-1} + \theta_{1}z_{1} + e_{K}$$
 we get:

$$e_{K} = x_{K} - (\delta_{0} + \delta_{1}x_{1} + \delta_{2}x_{2} + \dots + \delta_{K-1}x_{K-1} + \theta_{1}z_{1})$$
(12)

• given that we observe  $\mathbf{x}, z_1$  we can estimate the model 12 by OLS  $\Rightarrow$  replace  $e_K$  with  $\hat{e}_K$ .

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_K x_K + \rho \hat{e}_K + error$$
(13)

where:

error = 
$$\epsilon + \rho(x_1, ..., x_{K-1}, z_1) \left[ (\hat{\delta}_0, \hat{\delta}_1, ..., \hat{\delta}_{K-1}, \hat{\theta}) - (\delta_0, \delta_1, ..., \delta_{K-1}, \theta) \right]$$
  
depends on the sampling error.

イロト イポト イヨト イヨト 二日

Problem: e<sub>K</sub> not observable!!

• From 
$$x_{K} = \delta_{0} + \delta_{1}x_{1} + \delta_{2}x_{2} + ... + \delta_{K-1}x_{K-1} + \theta_{1}z_{1} + e_{K}$$
 we get:

$$e_{K} = x_{K} - (\delta_{0} + \delta_{1}x_{1} + \delta_{2}x_{2} + \dots + \delta_{K-1}x_{K-1} + \theta_{1}z_{1})$$
(12)

• given that we observe  $\mathbf{x}, z_1$  we can estimate the model 12 by OLS  $\Rightarrow$  replace  $e_{\mathcal{K}}$  with  $\hat{e}_{\mathcal{K}}$ .

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_K x_K + \rho \hat{e}_K + error$$
(13)

where:

error =  $\epsilon + \rho(x_1, ..., x_{K-1}, z_1) \left[ (\hat{\delta}_0, \hat{\delta}_1, ..., \hat{\delta}_{K-1}, \hat{\theta}) - (\delta_0, \delta_1, ..., \delta_{K-1}, \theta) \right]$ depends on the sampling error.

 $\Rightarrow$  OLS estimator of (13) will be consistent!!

Brunetti-Fiaschi-Parenti

Quantitative Economics

(ロ) (同) (ヨ) (ヨ) (ヨ) (つ)

#### • The OLS estimation of (13) is an example of CF estimator.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The OLS estimation of (13) is an example of CF estimator.
- The inclusion of residuals  $\hat{e}_{K}$  "controls" for the endogeneity of  $x_{K}$  in the original equation.

- The OLS estimation of (13) is an example of CF estimator.
- The inclusion of residuals ê<sub>K</sub> "controls" for the endogeneity of x<sub>K</sub> in the original equation.
- The OLS estimate of  $\beta_j$  and j = 1, ..., K are *identical* to the 2SLS.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The OLS estimation of (13) is an example of CF estimator.
- The inclusion of residuals ê<sub>K</sub> "controls" for the endogeneity of x<sub>K</sub> in the original equation.
- The OLS estimate of  $\beta_j$  and j = 1, ..., K are *identical* to the 2SLS.
- Test of endogeneity:  $\rho = 0$ .

イロト イポト イヨト イヨト 二日

- The OLS estimation of (13) is an example of CF estimator.
- The inclusion of residuals ê<sub>K</sub> "controls" for the endogeneity of x<sub>K</sub> in the original equation.
- The OLS estimate of  $\beta_j$  and j = 1, ..., K are *identical* to the 2SLS.
- Test of endogeneity:  $\rho = 0$ .
- Problem: *ê<sub>K</sub>* is a *generated regressor* ⇒ we need bootstrap for right standard errors!

イロト イポト イヨト イヨト 二日

# Control Function: summaryzing

**Obtain the residuals**  $\hat{e}_{\mathcal{K}}$  from the regression:

$$x_{K} = \delta_{0} + \delta_{1}x_{1} + \delta_{2}x_{2} + \dots + \delta_{K-1}x_{K-1} + \theta_{1}z_{1} + e_{K}$$
(14)

• • • • • • • • • • • • •

## Control Function: summaryzing

**Obtain the residuals**  $\hat{e}_{\mathcal{K}}$  from the regression:

$$x_{K} = \delta_{0} + \delta_{1}x_{1} + \delta_{2}x_{2} + \dots + \delta_{K-1}x_{K-1} + \theta_{1}z_{1} + e_{K}$$
(14)

Q Run the OLS regression

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_K x_K + \rho \hat{e}_K + error$$
(15)

< □ > < □ > < □ > < □ >

Brunetti-Fiaschi-Parenti

## Control Function: summaryzing

**Obtain the residuals**  $\hat{e}_{\mathcal{K}}$  from the regression:

$$x_{K} = \delta_{0} + \delta_{1}x_{1} + \delta_{2}x_{2} + \dots + \delta_{K-1}x_{K-1} + \theta_{1}z_{1} + e_{K}$$
(14)

2 Run the OLS regression

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_K x_K + \rho \hat{e}_K + error$$
(15)

**③** Test  $\hat{\rho} = 0$ .

イロト イポト イヨト イヨト 二日

#### References

- Wooldridge: Econometric Analysis of Cross Section and Panel Data; Chapter 5 and Chapter 6
- R file: endogeneity\_EUregions.R in *qe4Policy\_19Ott2015*.

A (1) > A (2) > A