Quantitative Economics for the Evaluation of the European Policy

Dipartimento di Economia e Management

Co-funded by the Erasmus+ Programme of the European Union

Project funded by

European Commission Erasmus + Programme –Jean Monnet Action

Project number 553280-EPP-1-2015-1-IT-EPPJMO-MODULE

Irene Brunetti Davide Fiaschi Angela Parenti¹

03/10/2016

Brunetti-Fiaschi-Parenti

Econometric model of convergence

Brune

Hypothesis of absolute convergence with linear model: $\beta < 0$

$$\overline{g_{Y/L}} = intercept + \beta \log (Y/L_{i,1991}) + \epsilon_i$$

(1

	Dependent variable:
	c(average Growth Rate Single Regions)
LogGDPpwRel_initialYe	ar -0.014^{***}
	(0.001)
Constant	0.015***
	(0.001)
Observations	257
R ²	0.506
Adjusted R ²	0.504
Residual Std. Error	$0.010 \; (df = 255)$
F Statistic	261.512^{***} (df = 1; 255)
Note:	*p<0.1; **p<0.05; ***p<0.01
-Fiaschi-Parenti	Quantitative Economics 03/10

Some Remarks on Generalize Additive Models (GAMs)

A generalize additive model is a generalized linear model with a linear predictor involving a smooth function of the covariate:

$$y_i = s(x_i) + \epsilon_i \tag{2}$$

where y_i is the response variable, x_i the covariate, $s(\cdot)$ a smooth function and ϵ_i are i.i.d. $N(0, \sigma^2)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A generalize additive model is a generalized linear model with a linear predictor involving a smooth function of the covariate:

$$y_i = s(x_i) + \epsilon_i \tag{2}$$

where y_i is the response variable, x_i the covariate, $s(\cdot)$ a smooth function and ϵ_i are i.i.d. $N(0, \sigma^2)$.

To estimate $s(\cdot)$, let represent it is such a way that Eq. (2) becomes a linear model by choosing a *basis* function:

$$s(x) = \sum_{j=1}^{q} b_j(x)\beta_j \tag{3}$$

for some values of the unknown parameters.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A generalize additive model is a generalized linear model with a linear predictor involving a smooth function of the covariate:

$$y_i = s(x_i) + \epsilon_i \tag{2}$$

where y_i is the response variable, x_i the covariate, $s(\cdot)$ a smooth function and ϵ_i are i.i.d. $N(0, \sigma^2)$.

To estimate $s(\cdot)$, let represent it is such a way that Eq. (2) becomes a linear model by choosing a *basis* function:

$$s(x) = \sum_{j=1}^{q} b_j(x)\beta_j$$
(3)

for some values of the unknown parameters.

For example, consider a 4th order polynomial where $b_1(x) = 1, b_2(x) = x, b_3(x) = x^2, b_4(x) = x^3, b_5(x) = x^4$, so that Eq.(3) becomes:

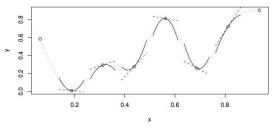
$$s(x) = \beta_1 + x\beta_2 + x^2\beta_3 + x^3\beta_4 + x^4\beta_5.$$
 (4)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Polynomial bases have some problems in estimating on the whole domain of x. Alternatively, the **spline** bases perform well.

Polynomial bases have some problems in estimating on the whole domain of x. Alternatively, the **spline** bases perform well.

A cubic spline is a curve, made up of sections of cubic polynomial, joined together so that they are continuous in value as well as first and second derivatives. The points at which the sections join are known as the **knots** of the spline



Knots must be chosen!

Brunetti-Fiaschi-Parenti

03/10/2016 4 / 14

Given knot location, how do we choose the **degree of smoothing** (i.e. the basis dimension)?

One way, is to keep the basis dimension fixed, at a size a little larger than it is believed could reasonably be necessary, but to control the models smoothness by adding a wiggliness penalty to the least squares fitting objective.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Given knot location, how do we choose the **degree of smoothing** (i.e. the basis dimension)?

One way, is to keep the basis dimension fixed, at a size a little larger than it is believed could reasonably be necessary, but to control the models smoothness by adding a wiggliness penalty to the least squares fitting objective.

For example, rather than fitting the model by minimizing:

$$\|\mathbf{y} - \mathbf{X}\beta\|^2 \tag{5}$$

it could be fit by minimizing,

$$\|\mathbf{y} - \mathbf{X}\beta\|^2 + \lambda \int [s''(\mathbf{x})]d\mathbf{x}$$
(6)

where the integrated square of second derivative penalizes models that are too wiggly.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Given knot location, how do we choose the **degree of smoothing** (i.e. the basis dimension)?

One way, is to keep the basis dimension fixed, at a size a little larger than it is believed could reasonably be necessary, but to control the models smoothness by adding a wiggliness penalty to the least squares fitting objective.

For example, rather than fitting the model by minimizing:

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 \tag{5}$$

it could be fit by minimizing,

$$\|\mathbf{y} - \mathbf{X}\beta\|^2 + \lambda \int [s''(\mathbf{x})]d\mathbf{x}$$
(6)

where the integrated square of second derivative penalizes models that are too wiggly. The trade off between model fit and model smoothness is controlled by the *smoothing* parameter, λ . $\lambda \to \infty$ leads to a straight line estimate for *s*, while $\lambda = 0$ results in an un-penalized regression spline estimate.

Brunetti-Fiaschi-Parenti

イロト 不得 トイヨト イヨト 二日

Given that s is linear in parameters β the penalty can be written as a quadratic form:

$$\lambda \int [s''(x)] dx = \beta' \mathbf{S}\beta \tag{7}$$

where **S** of known coefficients.

Therefore the penalized regression spline problem is to minimize:

$$\|\mathbf{y} - \mathbf{X}\beta\|^2 + \lambda\beta'\mathbf{S}\beta \tag{8}$$

$$\rightarrow \hat{\beta} = (\mathbf{X}'\mathbf{X} + \lambda \mathbf{S}')^{-1}\mathbf{X}'\mathbf{y}$$
(9)

 λ must be chosen!! Too high λ leads to over-smoothing while too low λ to under-smoothing \rightarrow generalized cross-validation.

When we have and additive model with more than one covariate as for example:

$$y_i = s_1(x_i) + s_2(z_i) + \epsilon_i \tag{10}$$

the parameters β are obtained by minimization of the penalized least squares objective:

$$\| \mathbf{y} - \mathbf{X}\beta \|^2 + \lambda_1 \beta' \mathbf{S}_1 \beta + \lambda_2 \beta' \mathbf{S}_2 \beta$$
(11)

Econometric model of convergence (cont.d)

Hypothesis of absolute convergence with a nonparametric model: $s^\prime < 0$

$$\overline{g_{Y/L}} = intercept + s\left(\log\left(Y/L_{i,1991}\right)\right) + \epsilon_i$$
(12)

Parametric coeff.:				
	Estimate	Std. Error	t-Stat	P-value
(Intercept)	0.0175179	0.0006103	28.7	$< 2e^{-16}$ ***
Smooth terms:	edf	Ref.df	F	p-value
s(LogGDPpwRel_initialYear)	8.722	8.978	37.97	$< 2e^{-16}$ ***
	R-sq.(adj)=0.565; Dev.expl.=58% GCV=9.948 <i>e</i> ⁻⁰⁵ ; Scale est.=9.5717 <i>e</i> ⁻⁰⁵ ; n=257			

Brunetti-Fiaschi-Parenti

03/10/2016 8 / 14

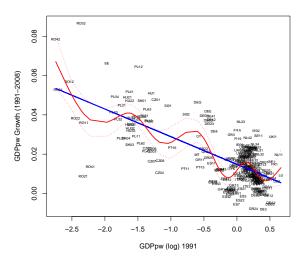


Figura: Absolute convergence in the GDP per worker. Parametric and nonparametric regression

Brunetti-Fiaschi-Parenti

Quantitative Economics

03/10/2016 9 / 14

Conditional convergence

Hypothesis of conditional convergence with linear model: $\beta_0 < 0$

$$\overline{g_{Y/L}} = intercept + \beta_0 \log \left(Y/L_{i,1991} \right) + \beta_1 \overline{s} + \beta_2 \overline{n} + \beta_3 \overline{h} + \epsilon_i \qquad (13)$$

	Dependent variable:	
	c(averageGrowthRateSingleRegions)	
LogGDPpwRel_initialYear	-0.015***	
	(0.001)	
log(mean_invRate)	0.003	
	(0.003)	
log(mean_empGR_augm)	-0.015***	
	(0.003)	
log(mean_hc_index)	0.020***	
	(0.002)	
Constant	-0.093***	
	(0.012)	
Observations	257	
R ²	0.641	
Adjusted R ²	0.635	
Residual Std. Error	0.009 (df = 252)	
F Statistic	112.557^{***} (df = 4; 252)	
Note:	*p<0.1; **p<0.05; ***p<0.01	

Hypothesis of conditional convergence with a nonparametric model: $s'_0 < 0$

 $\overline{g_{Y/L}} = intercept + s_0 \left(\log \left(Y/L_{i,1991} \right) \right) + s_1 \left(\overline{s} \right) + s_2 \left(\overline{h} \right) + s_3 \left(\overline{h} \right) + \epsilon_i$ (14)

Parametric coeff.:	Estimate	Std. Error	t-Stat	P-value
(Intercept)	0.0175179	0.0004611	37.99	$< 2e^{-16}$ ***
Smooth terms:	edf	Ref.df	F	p-value
s(LogGDPpwRel_initialYear)	8.641	8.963	39.175	$< 2e^{-16}$ ***
s(log(mean_invRate))	5.392	6.582	1.722	0.109
s(log(mean_empGR_augm))	8.595	8.95	5.644	$< 2e^{-16}$ ***
s(log(mean_hc_index))	1.235	1.434	80	$< 2e^{-16}$ ***
	R-sq.(adj)=0.752; Dev.expl.=77.5% GCV=6.0497 e^{-05} ; Scale est.=5.4645 e^{-05} ; n=257			

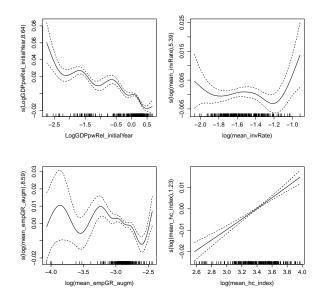


Figura: Estimate of generalized additive model: => < => =

Brunetti-Fiaschi-Parenti

Quantitative Economics

03/10/2016 12 / 14

σ -convergence

Another type of convergence ... σ -convergence

Variance of the log of the income per worker

$$\sigma_t^2 = \frac{\sum_i^N \left[\log\left(Y/L_{i,t}\right) - \mu_t \right]^2}{N}$$
(15)

Mean of the log of the income per worker

$$\mu_t = \frac{\sum_{i}^{N} \log\left(Y/L_{i,t}\right)}{N} \tag{16}$$

Then:

$$\sigma_t = intercept + \gamma t + \eta_t \tag{17}$$

	Dependent variable:	
	sdLogGDPpw	
years	-0.009***	
Constant	(0.0004) 19.259***	
Constant	(0.710)	
Observations	18	
R ²	0.977	
Adjusted R ²	0.976	
Residual Std. Error	0.008 (df = 16)	
F Statistic	685.194^{***} (df = 1; 16)	
Note:	*p<0.1; **p<0.05; ***p<0.0	
Ou	antitative Economics	03/10/2016

Brunetti-Fiaschi-Parenti

13 / 14

σ -convergence (con.d)

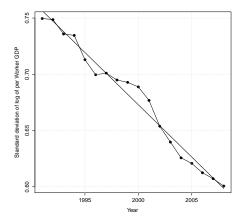


Figura: σ -convergence in the log of GDP per worker of 256 European regions.

Brunetti-Fiaschi-Parenti

03/10/2016 14 / 14

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A