
A “Level-Zero" Tutorial for Getting Started with R
April Galyardt
January 2, 2014

A plethora of R tutorials are available. Why do we need another
one? The issue is that most existing tutorials are written for people
with some experience with programming or using command line
interfaces. These tutorials can be difficult to work through if you’re
trying to figure out file-types, working directories, different types of
objects, and syntax for the first time all at once.

We’re going to work through all of these things one thing at a
time, and try to keep our sense of humor. I really like the charac-
ter Po from Kung Fu Panda. He may start at (the previously non-
existent) level zero, but reaches mastery through his own path. That’s
what we’re aiming for here.

Note, do not try to ’read’ this tutorial. Instead, work through it.
This tutorial is written for you to type each command into R as you
get to it. If you skip a command, what comes next may not work, or
may not make sense.

If you get an idea, try it out. Learn by doing, and don’t be afraid
to play around with it.

Downloading and Installing R

The main page for R is http://cran.r-project.org/, and it has
versions of R available for Linux, Mac and Windows. You want to
download the latest version of the “precompiled binary distribution".
These are the ones that will install just like any other application you
might use on your computer, and they are the 3 links on the top of
the page.

Figure 1: The R logo. If you don’t see
this, you’re probably on the wrong
website.

When you click on the link corresponding to your operating sys-
tem, you may be asked to choose a CRAN mirror. “Mirror" means it’s
an exact copy of the website. The different mirrors allow for faster
downloads in different locations. Choose the mirror that’s closest
to you. For those of us in Georgia, that’s Oak Ridge, TN. Once you
download the software, you can install it as usual.

One important note here is that there are subtle differences in the
GUI (graphical user interface) for R in different operating systems
(OS). For example, the drop-down menu options for the Mac distri-
bution are organized slightly differently than Windows drop-down
menu options. However, the commands will not be. Any command
you give R for an analysis will be exactly the same across any OS.

http://cran.r-project.org/

a “level-zero" tutorial for getting started with r 2

This tutorial will use screenshots from the Mac version, but other
than appearance, everything should be similar in Windows.

Opening R for the First Time

When you open R, the main window that opens is the R console,
shown in Figure 2. A second window, for a script editor, may also
open. We’ll use the script editor later, but for now, just close the
window. We’re going to work just with the console and the command
line.

Figure 2: The R Console. The > at
the bottom denotes the command line
where you will type commands.

Using the Command Line

We’ll start by just using the command line like a ridiculously fancy
calculator. To calculate 5 ∗ 3 + 1, at the command line, type

> 5*3+1

Similarly, 6
7 + 4 ∗ 55 is entered as

> 6/7 + 4*55

a “level-zero" tutorial for getting started with r 3

Notice that for arithmetic, spaces don’t matter. Try Most of the time spaces don’t matter
in R, but there is one exception that
we’ll talk about in the Types of R objects
section.

> 6 / 7 + 4 *55

Next are exponents, to calculate 36 enter

> 3^6

Now, sometimes we need to be more careful about the order of
operations. Let’s say we want to calculate

5 + 3(2− 10)2

Here you need to enter

5 + 3(2− 10)2 = 197

> 5 + 3*(2-10)^2

Try entering this without the *. You should get an error:

> 5 + 3(2-10)^2

Error: attempt to apply non-function

When you use parenthesis with an arithmetic operation, like mul-
tiplication, R knows that you’re specifying the order of operations.
But when you use parenthesis without an arithmetic operation, then
R thinks you’re trying to use a function. In this example, R thinks We’ll talk about functions in detail, in

the Functions and "Help" Files section.you’re trying to use the 3(...) function, but 3 isn’t a function, so it’s
giving you an error.

The nifty Up-arrow trick. Let’s say that we want to calculate
something more complicated, say(

1 + (2− 1/3)2

5(1− 3 ∗ 6)

)3

Until you get more practice, you want to be very careful about typing
all of this out at one time. There’s bound to be a mis-placed paren-
thesis or some other typo. So you work through the order of opera-
tions one at a time, building up the command. Just start with the first
step

> (2 - 1/3)^2

[1] 2.777778

Now, press the “Up arrow" key ↑. This will bring back up the last
command that you entered on the command line. You can actually
keep scrolling through all of your previous commands, but we just
need the last command. Now we can add “1 +" and we’ll have the
numerator.

> 1+(2 - 1/3)^2

[1] 3.777778

a “level-zero" tutorial for getting started with r 4

Press ↑ again, and this time, we’ll add parenthesis and the denomina-
tor.

> (1+(2 - 1/3)^2)/(5(1-3*6))

Error: attempt to apply non-function

Oops, I forgot that * in the denominator! I can just press ↑ and fix
the typo. This is one reason to build up complicated instructions one
piece at a time. Fix the inevitable mistakes as you go.

> (1+(2 - 1/3)^2)/(5*(1-3*6))

[1] -0.04444444

Now, for the final step, I need to put parenthesis around the whole
thing and cube all of it.

> ((1+(2 - 1/3)^2)/(5*(1-3*6)))^3

[1] -8.77915e-05

Warning! If you forget the outermost
parenthesis, you’ll only cube the de-
nominator, and you’ll get something
else. (1 + (2− 1/3)2)/(5 ∗ (1− 3 ∗ 6))3

[1]− 6.15148e− 06
Now try calculating on your own:

3 + 1
52 − 10

(
3

20
+ 1
)3

You should get −15.04875.

Working Memory

So far we haven’t actually done anything with R that’s saved any
of our work. After we entered the commands in the Opening and
exporting data in R section, R executed them immediately, printed out
the results and forgot about them.

What if we want to calculate something and then use it again
later? For example, we might need to calculate the mean of a data set
and then use it repeatedly in following calculations. We’ll talk about
how to do this in just a little bit when we get to functions. For the
mean time, let’s say we need to calculate, and then refer to;√

42 + 3.12

If we type

> sqrt(4^2 + 3.1^2)

[1] 5.060632

sqrt()

is first function we’re meeting. It takes
the square-root √

then we get the answer, but nothing gets stored in working memory,
so we can’t use it later. In order to use this later, we need to give this
quantity a name and save it as an R object. Let’s call this ‘a’:

a “level-zero" tutorial for getting started with r 5

> a = sqrt(4^2 + 3.1^2)

>

This time we don’t get any other output from R. It’s basically saying,
“Ok, got it, what’s next?" If we want to see what’s stored as ‘a’, all we
have to do is type the object name on the command line:

> a

[1] 5.060632

Now, we can refer to this quantity whenever we need it:

42 + 3.12

> a^2

[1] 25.61

√
42 + 3.12 + (9)(1.2)

> a + 9*1.2

[1] 15.86063

However, if I come back and store something else as ‘a’, then my
previous ‘a’ is gone. Let’s say I now enter:

a =
√

52 + 9.42

> a = sqrt(5^2 + 9.4^2)

> a

[1] 10.64707

This doesn’t change any of the calculations that R has previously
done. But every calculation going forward will be with the new ‘a’.

> a^2

[1] 113.36

Key Point: The stuff that R has printed out in the console is differ-
ent from the stuff stored in working memory. What’s displayed is a
history of everything you’ve done so far. We need to use a command
to get R to tell us everything that’s stored in working memory.

Figure 3: What appears on the console
is a record of what you’ve done so far.
It doesn’t tell you what’s in the working
memory.

The ls() command gives us a list of everything that’s stored in
working memory. Since it’s a function, you have to type it with
parenthesis, but we’ll talk more about that in the Functions and "Help"
Files section.

> ls()

[1] "a"

a “level-zero" tutorial for getting started with r 6

Right now, the only object we’ve created is ’a’, so it’s the only thing in
the list.

ls()

Lists everything stored in working
memory.

If we need to delete an object from working memory, we use the
rm() command. Suppose that we want to delete ’a’, then we put ’a’
inside the parenthesis, rm(a). Then, if we use ls() again, we can see
that the working memory is empty.

> ls()

[1] "a"

> rm(a)

> ls()

character(0)

>

rm()

Used to remove objects from working
memory.

Naming R Objects You can name an R object pretty much anything
you want to as long as it starts with a letter. a0 is a good name, but
0a won’t work. Note that R is case-sensitive, so x is a different object
than X.

> a0 = 5

> a0

[1] 5

> 0a

Error: unexpected symbol in "0a"

You want to get in the habit of calling your R objects something
that makes sense, and you can remember what’s what. x is pretty
common for generic predictor variables, and y is common for generic
response variables. But if you have a variable that’s measuring the
diameter of trees, then call it diam or d.trees or something where
you can remember what it is.

If you’re working with data and you imported it and called it, for
example x, and you create a new variable and call it x too, then your
data is gone from working memory. To prevent this, if you want to
save something new under a variable name, just type that name on
the command line. If something is already saved under that name,
then R will print it out.

> a0

[1] 5

If there’s nothing saved there, then R will print out an error, and
you’re free to save whatever you want under that variable name.

> a1

Error: object ’a1’ not found

a “level-zero" tutorial for getting started with r 7

> a1 = (3+1.4)^2

> a1

[1] 19.36

Types of R objects

Everything in R is saved as an ’object’ in working memory. But there
are lots of different types of objects, and they all behave a little differ-
ently. If you want to find out what kind of object something is, you
can use the function class(). class()

Tells you what kind of R object you’ve
got.> class(a)

Error: object ’a’ not found

>

Oh, right. We deleted ’a’. We’ll just re-create it. [Hint: Use the ⇑.]

> a = sqrt(5^2 + 9.4^2)

> class(a)

[1] "numeric"

>

numeric

The most basic type of object is just a number. By default R uses
double-precision calculations. That just means that calculations will
be accurate to as many significant digits as you’ll pretty much ever
need.

So our ’a’ above is just a single number, but sometimes we want to
do the same operation to a whole list of numbers. Think of a linear
function

y = 3 + 2x

Let’s say that we want to compute y for every x from 0 to 10. We
could do that this way;

> 3+2*0

[1] 3

> 3+2*1

[1] 5

> 3+2*2

[1] 7

and etcetera etcetera etcetera. But even with only 11 numbers to
calculate that would get painfully tedious. So instead we make a
numeric vector of x’s, and do the 11 calculations all at the same time.

The most basic way to make a vector is to use the ’concatenate’
function c(). c()

The concatenate function puts things
together into a vector.

a “level-zero" tutorial for getting started with r 8

> x = c(0,1,2,3,4,5,6,7,8,9,10)

> x

[1] 0 1 2 3 4 5 6 7 8 9 10

> class(x)

[1] "numeric"

Like ’a’, our vector ’x’ is numeric, but ’x’ is an ordered list of 10 num-
bers. And that is effectively what a vector is, it’s an ordered list of
numbers. Of course, if you ask a physicist what a vector is, you’ll get
a much longer more complicated definition. But for our purposes, it’s
just a list of numbers.

Now, if I want to calculate

y = 3 + 2x

all I have to do is this

> 3+2x

Error: unexpected symbol in "3+2x"

Darn it, I forgot that * again. Notice that the error message is differ-
ent than the one we got before, but it’s really the same mistake.

> 3+2*x

[1] 3 5 7 9 11 13 15 17 19 21 23

Now suppose that you want to calculate y for x all the way from 0

to 100 instead of for just 0 to 10. I don’t want to have to type out 100

numbers! Fortunately, there are 2 shortcuts. The first shortcut is 0:100 a:b

Makes a vector of numbers from a to b.
> 0:100

[1] 0 1 2 3 4 5 6 7 8 9 10 11 12

[14] 13 14 15 16 17 18 19 20 21 22 23 24 25

[27] 26 27 28 29 30 31 32 33 34 35 36 37 38

[40] 39 40 41 42 43 44 45 46 47 48 49 50 51

[53] 52 53 54 55 56 57 58 59 60 61 62 63 64

[66] 65 66 67 68 69 70 71 72 73 74 75 76 77

[79] 78 79 80 81 82 83 84 85 86 87 88 89 90

[92] 91 92 93 94 95 96 97 98 99 100

Here we want to notice 2 things: First those numbers in the brackets
are the index for my vector. The first object in my list [1] is a zero.
The fourteenth object, [14] is a 13, and so on.

The second thing we need to notice is that I haven’t saved my list
of numbers as anything, so they’re just printed out onto the screen. If
I want to save them, I have to store them under some name:

> x1 = 0:100

>

a “level-zero" tutorial for getting started with r 9

This way, if I want to calculate y = 3 + 2x for all 101 numbers, I only
need to type 2 little commands, and I’m done.

> x1 = 0:100

> y = 3+2*x1

>

We’ll talk more about making graphics later, but just to make sure it
worked, and we calculated x1 and y correctly, we can plot them.

> plot(x1, y) plot()

Basic plotting function for R. We will
talk about it in detail in section Plotting
Data

The little colon sequence has another trick or two up it’s sleeve.
Try these commands and see what you get.

> -5:5

> 1:10

> 10:1

There’s another shortcut for creating vectors, seq(). Let’s say I seq(a,b)

Makes a sequence of numbers from a to
b. It has some useful options/tweaks.

need a list of all the even numbers between 50 and 100, then I’ll enter

> seq(50, 100, by=2)

Or If I need 400 numbers from 100 to 200

> seq(100,200, length=400)

Try the next two commands but before you enter them, try to
guess what you’ll get:

> seq{0,10, by=0.5}

> seq(21, 7, length=31)

Were your guesses right?

One last useful trick is that you can combine these commands in
any combination, for example

> c(0:5, 10:16, seq(50, 65, by=3), 32:38)

[1] 0 1 2 3 4 5 10 11 12 13 14 15 16 50 53 56 59 62

[19] 65 32 33 34 35 36 37 38

character

A character object is just that, characters. For example,

> type = ’red’

> type

[1] "red"

> class(type)

[1] "character"

a “level-zero" tutorial for getting started with r 10

The first thing to notice when creating these objects is that they
type of parenthesis doesn’t really matter. And the second thing, is
that you can make a vector of characters too.

> type = c(’red’, "black", ’white’)

> type

[1] "red" "black" "white"

> class(type)

[1] "character"

This kind of object might seem less imminently useful than the
numeric objects that we use for calculations, but they often work
together. For example, they are one way that we can control the color
in plots:

> x = seq(1,100, length=26)

> y = 3 -0.5*x

> type = rep(c(’red’, ’black’), 13)

> type

[1] "red" "black" "red" "black" "red" "black"

[7] "red" "black" "red" "black" "red" "black"

[13] "red" "black" "red" "black" "red" "black"

[19] "red" "black" "red" "black" "red" "black"

[25] "red" "black"

> plot(x,y)

> plot(x,y, col=type)

rep(x,n)

Makes a vector where ’x’ is repeated ’n’
times.

Hmm... I’m not terribly happy with that plot, the points aren’t
visible enough, and it’s a little too hard to see the colors.

> plot(x,y, col=type, pch=19)

There are lots and lots of options for
tweaking plots in R. col changes the
color of the points, and the pch option
will change the shape of points plotted.
More in section Plotting Data.Let’s see what kind of object we get if we string together a charac-

ter and a number:

> tmp = c(’one’, 1)

> tmp

[1] "one" "1"

> class(tmp)

[1] "character"

A numeric vector can’t store characters, but a character vector will
treat a number as a character.

One other thing that we need to think about, is that the order in
which we compose functions matters a great deal. The two com-
mands below will produce very different results. Before you enter
them, try to predict what you will get.

a “level-zero" tutorial for getting started with r 11

> rep(c(’red’,’black’, ’white’), 5)

> c(rep(’red’,5), rep(’black’, 5), rep(’white’, 5))

Were your predictions correct?

factor

Factors are another way to store data from categorical variables.
Some R functions need categorical variables as inputs. So the first

In earlier versions of R factors took up
less memory than character objects,
but it doesn’t make as much difference
now. As you get more practice, this is
something to remember, if you can take
up less working memory or you can use
fewer operations, then you’ll get results
faster.

thing we’ll do is turn a character into a factor.

> tmp = rep(c(’red’,’black’, ’white’), 5)

> class(tmp)

[1] "character"

> type = factor(tmp)

> class(type)

[1] "factor"

> type

[1] red black white red black white red black white

[10] red black white red black white

Levels: black red white

> levels(type)

[1] "black" "red" "white"

factor()

creates a factor.

levels()

Gives you the levels of a factor.

There’s another way we can create exactly the same object

> rep(1:3, 5)

[1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

> type.2 = factor(rep(1:3, 5), labels=c("red", "black", "white"))

> type.2

[1] red black white red black white red black white

[10] red black white red black white

Levels: red black white

Notice that the default plot for a factor object is a bar chart, which
should be your default choice for displaying a categorical variable.

> plot(type.2)

> plot(type.2, col = c(’red’,’black’, ’white’))

data frame

Now most of the time when we do a scientific study, we have mul-
tiple variables on each unit of observation. If we’re doing a study
in the behavioral sciences, then we’ll have any number of variables
for each participant in our study including predictor variables such
as race, gender, and experimental condition as well as one or more

a “level-zero" tutorial for getting started with r 12

response variables. We’d like to store all of these variables together in
a single R object. That’s what a data frame does.

Rather than create one, let’s use one of the built-in R data sets.
There are many many data sets availble through R, some as built-
in data sets, others are included in R packages. Type iris on the
command line, what happens? Let’s explain,

> class(iris)

[1] "data.frame"

> dim(iris)

[1] 150 5
dim()
Gives you the dimensions of a data
frame, matrix or array in R:
(rows, columns)This is telling us that iris is a data frame with 150 rows and 5

columns. When you just typed iris on the command line, you asked
R to display the whole object. So R complied and printed out all
5(150) = 750 numbers and filled up the console window a couple of
times over. That’s rarely useful, so we want to get a few other tools
for seeing what’s in a data frame.

> names(iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"

[5] "Species"

names()

lists the names of the variables in a data
frame.

This is where it becomes obvious that we really are talking about real
flowers. Four variables are well named measurements of physical
attributes of the flowers, and the fifth variable is the species of iris.
This is useful, but it’s also useful to look at the first couple rows of
data, which is where the next command comes in.

> head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

head()

prints out the first 6 rows of a data
frame.

It’s also useful to be able to get the basic summary statistics on
each variable in the data frame. The summary function is a generic
function that can be applied to a lot of different types of R objects.
When it is applied to a data frame, it gives us the basic statistics on
each variable, depending on whether the variable is quantitative or
categorical. Note, that it’s a very very basic summary, it doesn’t even
give us standard deviations.

summary()

general use function. When applied to
a data frame, displays basic summary
statistics for each variable.

> summary(iris)

a “level-zero" tutorial for getting started with r 13

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100 setosa :50

1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300 versicolor:50

Median :5.800 Median :3.000 Median :4.350 Median :1.300 virginica :50

Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199

3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800

Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

Now, let’s say that I want to examine the distribution of Sepal.Length;
how do I get the variable I’m interested in all by itself? If I just type
in Sepal.Length, I get an error.

> Sepal.Length

Error: object ’Sepal.Length’ not found

The variable is contained within the data frame, so we can call it as
part of the data

data.frame$variable

calls a variable within a data frame
object.

> iris$Sepal.Length

[1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9 5.4 4.8 4.8

[14] 4.3 5.8 5.7 5.4 5.1 5.7 5.1 5.4 5.1 4.6 5.1 4.8 5.0

.....

[144] 6.8 6.7 6.7 6.3 6.5 6.2 5.9

If we “attach" a data frame to the workspace, then we can call the
variables directly.

> attach(iris)

> Sepal.Length

[1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9 5.4 4.8 4.8

....

attach()

attaches a data frame, so that you can
call variables directly.

If you’re only working with one data set, then attaching a data frame
makes a lot of sense. However, if you’re working with multiple data
sets, then you probably don’t want to attach all of the data sets at
the same time. For example, if you’re doing homework, and you’ve
moved on to problem 2, you don’t want to leave everything from
problem 1 hanging around.

> detach(iris)

> Sepal.Length

Error: object ’Sepal.Length’ not found

detach()

detaches a data frame, removes the
variables from the workspace.

To really use data frames well, we need one more tool in our tool-
box, and that’s indexing. There’s another way that we can get the
variable Sepal.Length by itself.

> iris[,1]

a “level-zero" tutorial for getting started with r 14

[,]

square brackets are used for indexing.

Sepal.Length is the first variable in the iris data frame, it’s the first
column, which is identified by the index “[,1]". If I wanted to pull off
the first row, I’d type

> iris[1,]

If I want to pull out the sepal width of the 10th flower, that’s the
second column of the 10th row, so I type

> iris[10,2]

Or, I could get this same number a couple of different ways, for ex-
ample

> iris$Sepal.Width[10]

> iris[10,]$Sepal.Width

Indexing is an incredibly flexible tool; we can pull off a subset of the
data with just the variables we’re interested in. Let’s suppose that
we wanted to ignore the petal measurements and focus on the sepal
measurements and the species. Then we want variables 1, 2, and 5,
though we may want to double check the order of the variable names
just in case.

> names(iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length"

[4] "Petal.Width" "Species"

> sepal = iris[,c(1,2,5)]

> head(sepal)

Sepal.Length Sepal.Width Species

1 5.1 3.5 setosa

2 4.9 3.0 setosa

3 4.7 3.2 setosa

4 4.6 3.1 setosa

5 5.0 3.6 setosa

6 5.4 3.9 setosa

Remember what that c() command does? If I want to get several
rows or several columns at the same time, we need to call all of them
together, so we need to use the concatenate function. How would
you pull out the data for the 4th, 20th and 100th flowers? Try it. You
should get:

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

4 4.6 3.1 1.5 0.2 setosa

20 5.1 3.8 1.5 0.3 setosa

100 5.7 2.8 4.1 1.3 versicolor

a “level-zero" tutorial for getting started with r 15

Let’s say I want just the subset of data for flowers with sepal width
less than 3. Let’s start by creating an index vector

> small = (iris$Sepal.Width <3)

Get R to print out small, it should be a vector of TRUE and FALSE. It’s
TRUE if the sepal width is less than 3, and FALSE if it’s not. Now we
can create our data subset.

> iris.sm.sw = iris[small,]

> dim(iris.sm.sw)

[1] 57 5

> summary(iris.sm.sw)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

Min. :4.400 Min. :2.00 Min. :1.300 Min. :0.200 setosa : 2

1st Qu.:5.600 1st Qu.:2.50 1st Qu.:4.000 1st Qu.:1.200 versicolor:34

Median :6.000 Median :2.70 Median :4.500 Median :1.400 virginica :21

Mean :5.953 Mean :2.64 Mean :4.509 Mean :1.449

3rd Qu.:6.300 3rd Qu.:2.80 3rd Qu.:5.100 3rd Qu.:1.800

Max. :7.700 Max. :2.90 Max. :6.900 Max. :2.400

So the new iris.sm.sw only includes the 57 rows where the sepal
width was less than 3. We can also see that the summary statistics
have changed for the other variables as well, which we would expect.
Now, we need to note that our new dataset has the same variable
names as the original iris data, if we attach both of them, we’ll get the
one we attached second, and it can be really, really hard to remember
which one that was. A good rule of thumb would be to not attach
multiple data sets with the same variable names. We should probably
double check and make sure we’ve got everything detached. The
detach command will detach anything and everything that we’ve
attached.

> detach()

One other useful trick is that I don’t have to actually create the
vector small, I can just combine it into the command to create iris.sm.sw:

> iris.sm.sw.2 = iris[iris$Sepal.Width <3,]

Use the commands we’ve learned so far to convince yourself that
iris.sm.sw and iris.sm.sw.2 are the same. Check the dimensions,
the summary statistics, the first few rows....

The versicolor species seems to have the skinniest sepals, why don’t
we take a closer look at those flowers? Alright, so we want to pull out
the rows where the Species is versicolor

> versi = (iris$Species=versicolor)

Error: object ’versicolor’ not found

a “level-zero" tutorial for getting started with r 16

Alright, let’s debug this. R is looking for an object named ‘versicolor’, There’s a bit of an urban legend that
in the earliest days of computers,
‘debugging’ really did mean physically
going and looking for bugs in the
computer.
http://en.wikipedia.org/wiki/

Debugging

which doesn’t exist. Ok, ‘versicolor’ is a level of a factor object, and
as such it’s really a string or character object. Since we want R to
match one character object to another, we need to put it in quotes.

> versi = (iris$Species=’versicolor’)

> versi

[1] "versicolor"

Hmm... we didn’t get an error, but we didn’t get what we wanted
either. We need a TRUE/FALSE vector that’s true for the versicolor
flowers. The problem is the = signs. First, we set iris$Species to be
‘versicolor’, then we set versi to be the same thing. Let’s check the
iris data frame and make sure we didn’t screw it up too bad.

> summary(iris)

...

Species

Length:150

Class :character

Mode :character

Yup, we overwrote the Species variable. So first we need to fix it, then
we need to actually get what we want. Since we overwrote the data
in R’s working memory, the easiest way to fix this is just reload the
original data back into the working memory. This is a key lesson for data analysis in

any software:
Never. Never. Never do anything that

might overwrite your original data file.
Keep your analysis separate from your
data.
Organizing and Saving Work in R

> data(iris)

> summary(iris)

...

Species

setosa :50

versicolor:50

virginica :50

Ok, we’ve got the data back, but we still need to figure out how to
get the data for just the versicolor flowers. If we want to select just
the elements of a vector that are equal to a particular value, we need
to use ==:

> versi = (iris$Species==’versicolor’)

http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Debugging

a “level-zero" tutorial for getting started with r 17

> versi

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[15] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[29] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[43] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

[57] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[71] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[85] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[99] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[113] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[127] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[141] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

> versicol = iris[versi,]

> summary(versicol)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

Min. :4.900 Min. :2.000 Min. :3.00 Min. :1.000 setosa : 0

1st Qu.:5.600 1st Qu.:2.525 1st Qu.:4.00 1st Qu.:1.200 versicolor:50

Median :5.900 Median :2.800 Median :4.35 Median :1.300 virginica : 0

Mean :5.936 Mean :2.770 Mean :4.26 Mean :1.326

3rd Qu.:6.300 3rd Qu.:3.000 3rd Qu.:4.60 3rd Qu.:1.500

Max. :7.000 Max. :3.400 Max. :5.10 Max. :1.800

Yay! We got it. And by looking at the summary of the Species col-
umn we know we got it right. Data frames are very common. You re-
ally want to get comfortable with them, and comfortable with pulling
out the pieces that you need.

You also want to get comfortable with "debugging". This is the
biggest part of programming. Try something, check it, adjust, check it
again, adjust again, and so on and so forth until it works. Of course,
check & adjust is also a life-skill ;).

Functions and "Help" Files

There are a few other types of R-objects that we haven’t talked about
(e.g., matrices, arrays, lists), but the most important one remaining is
functions. By now, you’ve met quite a few functions, but it’s worth it
to spend some time talking about functions in general.

By now you’ve probably noticed that we used parenthesis () for
functions, and brackets [] for indexes. We’ll talk about how to use

() for functions
[] for indices
{ } for control statements

braces { }, later.
You have to use the parentheses to call the function. Note the

difference between the results

> ls

> ls()

a “level-zero" tutorial for getting started with r 18

The second calls the function so you get the list of everything saved
in the workspace. The first prints out the function. That is mostly
annoying, but it can be useful if you need to figure out exactly what
the function’s doing, or if you need to look at an example of how to
write a function.

We just finished working with data frames, so let’s start by taking
a closer look at data.frame(). First we’ll look at the "help" file.

help(command.name)

OR ?command.name

Opens the documentation for the
command.

> ?data.frame

Why is "help" in quotes? Because the "help file" is just the documen-
tation page. It contains the technical details, but the documentation
requires a little practice to understand.

Figure 4: The R documentation for
data.frame().

You should notice that the page has several headings. The De-

scription gives a basic description of what the function does. The one
for data.frame is pretty typical; the first phrase tells you what you
need to know and a lot of the rest is full of jargon. Then there’s the
Usage section, where you get an outline of what to type in to use
the function, the inputs. The Arguments section usually gives some
more detail on the inputs the function takes. What’s in the Details

section varies from function to function. In some cases, it contains
mathematical details on how the function does its calculations. In
the data.frame case, it contains a little more information about how
the function works depending on whether or not some of the op-
tional inputs are included, and how data frames work in general. The

a “level-zero" tutorial for getting started with r 19

Value section tells you what the outputs of the function are. It’s often
a list that looks like the arguments list. In the data.frame documen-
tation, the output is a data frame, so it describes that data frame a
little bit more. Then there’s the Note and References sections. The See

Also section usually has links to related functions. If you can’t find
what you’re looking for on the first documentation page you look at,
sometimes you can find it on one of those related pages. Then at the
very very bottom, we find the Examples. When you’re trying to get
a function to work, look at the Usage, then the Arguments, then the
Examples.

For data.frame(), if we look at the Usage, it’s not clear what that
first argument ". . ." is supposed to be. So we look at the Arguments
section, “these arguments are of either the form value or tag=value."
That probably doesn’t make any sense right now. So now we take a
look at the Examples to see if we can figure it out. We’ll start with the
first segment:

L3 <- LETTERS[1:3]

fac <- sample(L3, 10, replace = TRUE)

(d <- data.frame(x = 1, y = 1:10, fac = fac))

The "same" with automatic column names:

data.frame(1, 1:10, sample(L3, 10, replace = TRUE))

is.data.frame(d)

is the R "comment character"
Good code has comments in it that
explain what it does. The # lets us
include these comments. Everything
on the same line that comes after that
character is ignored by R.
See Commenting your work.

Now, take it line by line. What does the first line do? Type it in.

> L3

[1] "A" "B" "C"

> class(L3)

[1] "character"

Ok, it creates a character vector with letters 1:3 of the alphabet. Let’s
double check what that LETTERS object is, just to be sure.

> LETTERS

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N"

[15] "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

<-
x<-5 is the same as x=5.
In older versions of R, <- worked better,
so you’ll see it more in older examples.

Yes, LETTERS is in fact a vector of the alphabet, so LETTERS[1:3] takes
the first 3 letters.

Alright, let’s move on to the second line. Type it in. What do you
get?

> fac

[1] "A" "A" "C" "C" "C" "B" "A" "A" "A" "A"

a “level-zero" tutorial for getting started with r 20

You almost certainly got something different than I did. The sample()

command takes a random sample, so your random sample is most
likely different than my random sample. In this case fac is a random
sample of size 10 from the L3 vector.

sample(x,n,...)

Takes a sample of size n from the vector
x, also has some optional arguments
you’ll want to pay attention to.

Now let’s try line 3.

commas!

The commas in between function
arguments are essential. If you forget
one, you’ll get an error.
Error: unexpected symbol in "..."

> d <- data.frame(x = 1, y = 1:10, fac = fac)

> d

x y fac

1 1 1 A

2 1 2 A

3 1 3 C

4 1 4 C

5 1 5 C

6 1 6 B

7 1 7 A

8 1 8 A

9 1 9 A

10 1 10 A

> class(d)

[1] "data.frame"

> is.data.frame(d)

[1] TRUE

This created my data frame with 3 variables, x, y and fac. So how is
line 5 different?

> data.frame(1, 1:10, sample(L3, 10, replace = TRUE))

X1 X1.10 sample.L3..10..replace...TRUE.

1 1 1 B

2 1 2 C

3 1 3 A

It put the same stuff in the data frame, but since we didn’t give it
variable names, it made some up. The first one’s ok. The second
one’s not terrible, the third one is horrific. Alright, scroll back up to
the Arguments section in the help file. Now that ". . ." makes sense.
That’s where we put the variables that we want to include in the
data frame. If we just put the value in, then it makes up a name for
the variable based on whatever we put in. On the other hand, if we
put in tag=value, then "tag" is what the data frame will name our
variable.

However, in R, like most programming languages, there’s almost
never just one way to do something. The following 2 lines will create
an object just like d.

> b = data.frame(1, 1:10, sample(L3, 10, replace = TRUE))

a “level-zero" tutorial for getting started with r 21

> names(b) = c(’x’,’y’,’fac’)

> b

x y fac

1 1 1 A

2 1 2 A

3 1 3 A

4 1 4 A

...

names()

This is the same function that we used
to get the names of a data frame. We
can also use it to set the names of an
object.

Now, what about the rest of those arguments? They’re optional ar-
guments. They give the function more flexibility. For example if our
data is on the 50 states, then we might want to use the state names
as the row names. The row.names option gives us the flexibility to do
this if we want to, but it’s optional so we don’t have to.

Plotting Data

As we move on to plotting, we’ll get more practice using functions.
We’ll go through two basic types of plots, (histogram, and scatterplot)
learn how to alter plots in Adding Things to Plots, and practice reading
the help files as we go.

Before we get started, let’s clean up the workspace. First, detach
anything that might be hanging around.

> detach()

Then we’ll clear the workspace using the dropdown menu.

Figure 5: This will delete everything
from R’s working memory. So you will
need to say "yes I really mean it" in a
confirmation window.

You can check that it worked by using ls()

> ls()

character(0)

histogram

Let’s pull that iris data back up. We’ll just start by making a basic plot
of Sepal.Length, then tweaking it.

a “level-zero" tutorial for getting started with r 22

> attach(iris)

> names(iris)

> hist(Sepal.Length)

Histogram of Sepal.Length

Sepal.Length

Fr
eq
ue
nc
y

4 5 6 7 8

0
10

20
30

Figure 6: The initial plot should look
something like this.

Now, let’s open the help file and see if we can use the options to
make it better, ?hist. Scroll down to the Arguments list.

The first argument is of course the data, x. Note that hist expects
the data to be a numeric vector. So it’s worth remembering that if we
give it a matrix or a data frame, we may not get what we’re after.

The second argument is breaks. This controls "the breakpoints
between histogram cells", otherwise known as bin-width. This is
usually the most important adjustment we can make to a histogram.
And you can see that R has a number of different ways we can spec-
ify the breaks. Let’s start with "a single number giving the number
of cells for the histogram". Of course, we also get the warning, "the
number is a suggestion only; the breakpoints will be set to pretty
values". But let’s try a couple of different things, and see what we
get.

> hist(Sepal.Length, breaks=10)

> hist(Sepal.Length, breaks=15)

> hist(Sepal.Length, breaks=20)

> hist(Sepal.Length, breaks=5)

Sometimes I’m not really a fan of these "pretty" breaks, it doesn’t give
you fine enough control. Let’s say we really, really want 12 or 15 bins,
rather than 8 or 20. If we specify the breaks as "a vector giving the
breakpoints between histogram cells" then it will actually do what we
want. First let’s check the range of the variable.

> range(Sepal.Length)

[1] 4.3 7.9

range()

gives the minimum and maximum of
the data.

So if our breaks go from 4 to 8, we should be fine. If we want 12

breaks, then we want a vector from 4 to 8 of length 12+1. Do you
remember how to do this? (numeric)

> br = seq(4, 8, length=13)

> hist(Sepal.Length, breaks=br)

Create a histogram with 15 bins. It should look like Figure 7.

Histogram of Sepal.Length

Sepal.Length

Fr
eq
ue
nc
y

4 5 6 7 8

0
5
10

20

Figure 7: Histogram of sepal length
with 16 bins.

Back to the list of arguments: Try changing freq to FALSE, see what
happens. We also see that the option probability does the same thing
as freq. These options make the histogram harder to interpret. What
it’s labeling as "density", isn’t the usual definition of density for a
continuous variable. These aren’t options we want to use under nor-
mal circumstances. We really want to stick with counts/frequency
unless we have a spectacular reason for doing otherwise.

a “level-zero" tutorial for getting started with r 23

The next two options give you some really fine-grained con-
trol over whether the bins are [a,b) or (a,b]. When your variable is
highly discrete, these can be useful, but in the case of the continuous
Sepal.Length, it really doesn’t make any difference.

The next two arguments density and angle will make some shading
lines on the bins. We can play with them a little bit, and see what
they do.

> hist(Sepal.Length, breaks=br, density=1)

> hist(Sepal.Length, breaks=br, density=5)

> hist(Sepal.Length, breaks=br, density=10)

> hist(Sepal.Length, breaks=br, density=10, angle=45)

> hist(Sepal.Length, breaks=br, density=10, angle=90) # particularly terrible

> hist(Sepal.Length, breaks=br, density=10, angle=120)

I’m not really a fan of the density arguments, I think col and border
produce prettier results.
> hist(Sepal.Length, breaks=br, col=’wheat’)

> hist(Sepal.Length, breaks=br, col=’tomato’)

> hist(Sepal.Length, breaks=br, col=’steelblue’) #one of my favorite R colors

> hist(Sepal.Length, breaks=br, col=’steelblue’, border=’wheat’)

> hist(Sepal.Length, breaks=br, col=’steelblue’, border=’tomato’)

> hist(Sepal.Length, breaks=br, col=’steelblue’, border=’slateblue’)

> hist(Sepal.Length, breaks=br, col=’wheat’, border=’steelblue’)

By now, we’ve got something that looks pretty good. We just need
to fix those labels. We don’t want to use the label Sepal.Length. So we
need to use the main and xlab options:

> hist(Sepal.Length, breaks=br, col=’steelblue’,

+ xlab=’Sepal Length’, main="Histogram of Sepal Length")

> hist(Sepal.Length, breaks=br, col=’steelblue’,

+ xlab=’Sepal Length’, main="")

Sepal Length

Fr
eq
ue
nc
y

4 5 6 7 8
0

5
10

20

Figure 8: hist(Sepal.Length, breaks=br,
col=’steelblue’, xlab=’Sepal Length’, main="")

Ok. That gives us something we can use. Figure 8.

scatterplot

Now we’re ready to work on plotting 2 variables. For this, we use the
generic plot() function. So let’s start by looking at the help file, ?plot.

The description reads "Generic function for plotting R objects".
What does that mean? It means that this same function command
will plot all kinds of different R objects. If we fit a regression model,
and name it reg.model, then plot(reg.model) will produce some sum-
mary and diagnostic plots for the model.

Right now, we just want to focus on creating a simple scatterplot,
so let’s click on plot.default

The description of plot.default reads "Draw a scatterplot with deco-
rations..." so we know this is what we’re looking for. Now, we look at
the usage, and see:

a “level-zero" tutorial for getting started with r 24

Figure 9: Help page for the plot func-
tion.

plot(x, y = NULL, type = "p", xlim = NULL, ylim = NULL,

log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL,

ann = par("ann"), axes = TRUE, frame.plot = axes,

panel.first = NULL, panel.last = NULL, asp = NA, ...)

Let’s just take this one argument at a time. The first argument is x,
so that’s where we’ll start.

> a = 50:60

> a

[1] 50 51 52 53 54 55 56 57 58 59 60

> plot(x=a)

> plot(a)

2 4 6 8 10

50
54

58

Index

a

Figure 10: plot(a)

Notice first that these two plot commands do exactly the same thing.
R assumes that whatever you put in the function as the first argu-
ment is x. However, since a is a vector, R has plotted the index on the
x-axis and the number on the y-axis, so the first point is (1,50) and
the last is (11, 60).

So that’s what plot does if you only give it one numeric variable, so
what if we give it two? Let’s create a b to go with our a.

> b = seq(0,6, length=length(a))

> b

[1] 0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4 6.0

> plot(x=a, y=b)

> plot(a,b)
50 52 54 56 58 60

0
1

2
3

4
5

6

a

b

Figure 11: plot(a,b) Note the difference
in the x-axis from figure 10

Again, notice that the last two commands do exactly the same thing.
Now, let’s look at the next argument type. If we look at the Usage,

a “level-zero" tutorial for getting started with r 25

we see type="p", so "p" for points is the default for type. If we don’t
specify something to override this, then we get points, as in figures
10 and 11. So let’s try the other types available,

> plot(a,b, type=’l’)

> plot(a,b, type=’b’)

> plot(a,b, type=’c’)

> plot(a,b, type=’o’)

> plot(a,b, type=’s’)

> plot(a,b, type=’h’)

Just remember we don’t have to use all the arguments or use them in
any specific order.

> plot(iris$Sepal.Length, iris$Petal.Length, xlab=’Sepal Length’,

ylab="Petal Length", xlim=c(0,8), ylim=c(0,8))

And more options for adjusting graphs are available with ?par. Take
a look at the documentation, and see if you can figure out what the
mfrow argument does.

> par(mfrow=c(1,2))

> plot(iris$Sepal.Length, iris$Petal.Length, xlab=’Sepal

Length’, ylab="Petal Length", pch=19, col=’blue’)

> plot(iris$Sepal.Width, iris$Petal.Width, xlab=’Sepal

Width’, ylab="Petal Width", pch=19, col=’red’)

par()

Graphical parameters can either be set
with the par command, or added as
arguments to plots.

Adding Things to Plots

Close the last quartz device, so we can start with a clean slate. By
now, you’ve certainly noticed that when you make one plot, the last
plot is overwritten and gone. So this leaves us with two questions:
1) Can I get two plots at the same time? and 2) How do I add some-
thing to a plot?

We’ve already seen one way to get multiple plots at the same time
with the par(mfrow=...) command. There’s another useful way to do
this, with dev.new().

> hist(iris$Petal.Length, xlab=’Petal Length’, main=NULL,

col=’tomato’)

> dev.new()

> plot(iris$Petal.Length, iris$Petal.Width, xlab="Petal

Length", ylab="Petal Width", pch=18)

dev.new()

Opens a new plotting device.

a “level-zero" tutorial for getting started with r 26

Organizing and Saving Work in R

Data are sacred. You don’t want anything or anyone to alter the
original data in any way. Data are typically time consuming and/or
expensive to collect1, particularly experimental data. 1 http://nicercode.github.io/blog/

2013-04-05-projects/In R, we have the ability to treat data as "read only". The data
are stored in their own original data file, perhaps a .csv, or a .rdata
file. We read it into R’s working memory, do the analysis, we save
the commands to do the analysis, save graphs and other necessary
output, and never have to alter the data file.

This has a couple of advantages. First, when you work with data
interactively, as in SPSS or Excel, a simple easy to make mistake can
modify the data, and this means that you are never sure where the
data came from or how it has been modified. This has caused real
and serious problems with published research; a discussion of a
recent example can be found in the Colbert Report archives2. 2 http://www.colbertnation.com/

the-colbert-report-videos/

425749/april-23-2013/

austerity-s-spreadsheet-error---thomas-herndon

The second advantage is that by preserving the original data and
saving every single command that you used to do the analysis, you
are making your work replicable. The generated output is com-
pletely disposable. At any point you can go through, delete the out-
put, and rerun the analysis from the beginning to double check it.
You can then share a small number of files with other researchers
who are interested in replicating your findings, or post the files on
your website with the paper. Increasing the ease of replicability in-
creases the quality of the science.

Controlling the Working Directory

R can save a couple of different file types, but before we talk about
them, we have to talk about what a working directory is and how to
control it.

getwd()

Gives you R’s current working direc-
tory.

> getwd()

This will print out the full path for R’s current working directory. It
tells you where in the computer’s file structure you currently are.
Check out the visualization in Figure 12. If the current working direc-
tory is John’s work folder, then we’ll get

> getwd()

[1] "/users/john/work"

When we tell R to save work, it will automatically save it to the cur-
rent working directory. In addition, when we talk about opening data
later (Opening and exporting data in R), R will look for the data in the
current working directory. So any time we’re getting stuff into or out
of R, we need to pay attention to the working directory.

http://nicercode.github.io/blog/2013-04-05-projects/
http://nicercode.github.io/blog/2013-04-05-projects/
http://www.colbertnation.com/the-colbert-report-videos/425749/april-23-2013/austerity-s-spreadsheet-error---thomas-herndon
http://www.colbertnation.com/the-colbert-report-videos/425749/april-23-2013/austerity-s-spreadsheet-error---thomas-herndon
http://www.colbertnation.com/the-colbert-report-videos/425749/april-23-2013/austerity-s-spreadsheet-error---thomas-herndon
http://www.colbertnation.com/the-colbert-report-videos/425749/april-23-2013/austerity-s-spreadsheet-error---thomas-herndon

a “level-zero" tutorial for getting started with r 27

Figure 12: Visualization of a directory
tree, or file structure in a computer.

Note that it has to be checked every time you open R. You don’t
get to just set the working directory once and be done with it. But
this is a good thing. If you set the working directory for one project,
finish it and start working on another project, you don’t want to keep
using the folder for the first project.

There are two ways to change the working directory. The first is to
use the command setwd, for example,

setwd() Sets the working directory.> setwd(’/users/carol/play’)

However, if you’re not used to typing out path names, this can be
a little annoying, since you have to be very careful to not make any
typos at all. Also, path names should not contain any spaces. Good
practice is to name folders with dashes or underscores instead of
spaces. So "Learning_R" is a much better folder name than "Learning
R". If your current folder names have spaces, they won’t play nice
with a command line environment, like we’re using in R.

There’s also a drop-down menu option for managing the working
directory. For Macs it’s under "Misc" as shown in Figure 13.

Figure 13: Menu option for changing
the working directory.

a “level-zero" tutorial for getting started with r 28

*.history files

We already know that you can scroll through your earlier commands
on the command line by pressing ↑. You can also look at and save the
entire history of commands that you’ve entered.

Figure 14: In the Mac version of R, this
icon will let you view/hide the entire
command history, and give you an
option to save it.

For Mac users, take a look at Figure 14. For non-Mac users, try the
command

> savehistory(file=’file_name.history’)

Note that R automatically saves the history as a hidden file in the
working directory where you open R. But until you get more practice
with command lines, you may not want to go looking for hidden
files. This gives you a way to save a copy of the history where you
can find it.

Now, the problem with saving only the history is that it saves
absolutely every command you’ve entered, and only the commands.
So all the errors, all the typos, everything gets saved, with no record
of which commands actually worked, and no comments to say what
these commands are supposed to do.

*.R Scripts

Script files solve all the problems with using history files, and have a
few other useful features. When you open R, two windows usually
open, the console and a new blank script document. So far, we’ve
used only the console. Now we’re ready to write a script.

1. Either open a new R session, or clear the workspace.

2. Use ls() to make double sure the workspace is clear.

3. Create a folder "LearningR" and change the working directory to
be that folder.

a “level-zero" tutorial for getting started with r 29

4. Use getwd() to make sure that the working directory is what you
want it to be.

5. If you don’t already have a new script editor or ’document’ win-
dow open, then open one up.

We’re going to create a short script that generates a sample of data
from a standard normal distribution, plots a histogram of the sample,
and shows the sample mean and population mean on the plot. We’ll
also add a legend.

Type this into the script editor (or copy and paste):

Draws and plots a sample from the standard normal distribution

n = 50 # sample size

x = rnorm(n, 0, 1) #draws the sample

x.bar = mean(x) #sample mean

br = seq(min(x), max(x), length=13) #sets breaks for the histogram

hist(x, col=’wheat’, breaks=br) # makes the histogram

abline(v=0, lty=3, col=’red’, lwd=2) # adds population line

abline(v=x.bar, lty=2, col=’blue’, lwd=2) # adds sample line

legend(’topright’, lty=c(3,2), col=c(’red’, ’blue’), lwd=2,

legend=c(’pop mean’, ’sample mean’), cex=0.8) #adds the legend

Note that we’ve got a line at the top that says what the script does,
and a label on each line of the code. We talk more about why this is
important in the Commenting your work section.

Once you’ve got it all typed in, save the file as ExampleScript.R

in your LearningR folder. Now it’s time to try to run the code and
de-bug it if necessary (and it’s usually necessary).

If the file is located in the folder that’s the current working direc-
tory, then the command to run the file is:

source() Runs an R script.> source(’ExampleScript.R’)

If the location of the file and the current working directory don’t
match, then you’ll get this error:

> source(’ExampleScript.R’)

Error in file(filename, "r", encoding = encoding) :

cannot open the connection

In addition: Warning message:

In file(filename, "r", encoding = encoding) :

cannot open file ’ExampleScript.R’: No such file or directory

If everything works perfectly, you should get something similar to
this plot

a “level-zero" tutorial for getting started with r 30

Histogram of x

x

Fr
eq
ue
nc
y

-2 -1 0 1 2

0
2

4
6

8
10 pop mean

sample mean

If you didn’t get that plot, try to figure out why not. The most
common culprits are missing or misplaced commas and parenthesis.
"unexpected symbol" usually, but not always, means it’s a comma
problem. "unused argument" or "missing argument" usually, but
not always, mean that there’s a parenthesis problem. "object ’X’ not
found" probably means there’s a typo; for example, you named your
data x and tried to take the mean of X. R is case-sensitive.

Scripts are the life-blood of R. If you are going to do anything
that’s more than a few lines long, you should create a script file. You
don’t have to write a script file like we did in the example, where
you write a complete script file and then run it all at once. Rather, as
you’re getting started write the commands out and comment them
in a script file, then you can cut and paste onto the command line.
Using the command line and the script editor together will let you
build up your code line by line and keep a good record of what the
code is supposed to do and which commands work. The script and
the original data file should be all that you ever need to share with
other researchers to make your work replicable.

*.Rdata files

You can save all the objects and functions that you have created in a
.RData file, by using the save() or the save.image() functions.

> save.image(file=’file_name.Rdata’)

> save(object1, object2, object3,...., file=’file_name.Rdata’)

save.image()

Saves everything in the current
workspace.

save()

Saves the listed objects.Note that both of these functions will save the file into your cur-
rent working directory. So if you can’t find the file, use getwd() to
see where to look for it.

a “level-zero" tutorial for getting started with r 31

So right now, try

> ls()

[1] "br" "n" "x" "x.bar"

> save.image(file=’Example.Rdata’)

Now close R. To re-open R and load the file, just double click on
the Example.Rdata file. Use ls() to make sure that you’ve preserved
all of the R objects.

> load("/path_name/LearningR/Example.Rdata")

> ls()

[1] "br" "n" "x" "x.bar"

> getwd()

[1] "/path_name/LearningR"

>

Note that when you open R in this way, your working directory is
set automatically as the folder that contains the file. This little trick
also works when you double click on *.R script files.

File Management Habits

Each project needs to be in its own folder. For small projects, like
homework, you can put everything in one folder. Just name the
folder "ERSH8150-HW1 and the data, graphics, and R files can all go
in there together.

However, bigger projects grow and evolve over time. Laying
out the file structure well in the beginning can save some serious
headache later on. A project will often start life as a couple of notes,
then you write some code to test out the ideas, then you might start
drafting a manuscript to record your observations in, by the end
you’ve got a couple of iterations of code, and a ton of figures, and a
few different drafts of a paper. If it’s not well organized, things can
get lost and mixed up. There isn’t one way to lay out a project, but a
good basic structure might look something like this:

project/

|------- data/

|------- doc/

|------- graphics/

|------- output/

Put your data in the /data directory and treat it as read only. De-
pending on the project, you might have csv files, a database, or even
additional subdirectories in here. If you have 2 or more data files,
say from a pilot study and the main study. You should have a /data
subdirectory.

a “level-zero" tutorial for getting started with r 32

Write-ups, whether formal papers, or informal notes, or something
in between should go in the /doc subdirectory. LaTeX tends to be
popular with statisticians, and has the benefit that it’s very easy to
update the graphics automatically. If you’re using Word, you’ll need
to remember to paste in the most recent versions of your figures.

Of course, the /graphics directory contains the graphics. A good
idea is to make sure this directory contains only generated files.
Meaning, that you can delete the contents and regenerate them from
your code and data at any time.

Other output should go in the /output folder; for example, sim-
ulation output or processed data. It may be a while before you’re
working on projects that are big enough to need this directory.

Initially, you can put your R code in the main project directory.
As the project gets bigger, you may want to pull out functions into
their own script that you can source. When you get to this point, it’s
probably best to create another directory /R_functions to hold these
functions.

The main thing to remember is data is precious, the generated
output is disposable. You can always re-run the analysis, recreating
the data is pretty much impossible.

Commenting your work

We saw our first example of commented code in the Functions and
"Help" Files section, now it’s time to think about this more deeply. If
you’re working on a project, and you have to leave it for a little while,
perhaps as little as a couple of days to a couple of weeks, when you
sit down to work again, your work may look like gibberish:

Example of badly commented code.
The worst comments are no comments.

load(’forest.rdata’)

attach(ufcgf)

plot(Dbh, Height)

lin.model = lm(Height~Dbh)

abline(lin.model)

summary(lin.model)

dev.new()

plot(Dbh, Height)

abline(lin.model)

sm.model = loess(Height~Dbh)

points(Dbh, sm.model$fitted, pch=19, col=’red’)

On the other hand, if you want to be able to easily pick up where
you left off, then commenting the code makes all the difference in the
world.

Example of decently commented code.load(’forest.rdata’)

a “level-zero" tutorial for getting started with r 33

attach(ufcgf)

#######

1991 forest inventory measures from the Upper Flat Creek

stand of the University of Idaho Experimental Forest

#######

Plot - Plot number

Tree - ID for tree within plot

Species - stored as a factor

Dbh - Diameter in mm

Height - Height of tree, in decimeters

#######

We want to examine the relationship between Height and Dbh

#######

plot(Dbh, Height) # makes the scatterplot

lin.model = lm(Height~Dbh) # fits the regression line

Height = a + b*Dbh

abline(lin.model) # adds the fit line to the scatterplot

summary(lin.model) #summary of the regression model

#######

dev.new()

plot(Dbh, Height) # makes a new scatterplot

abline(lin.model) # adds the line from the linear regression

sm.model = loess(Height~Dbh) # fits a smooth function

Height = g(Dbh)

points(Dbh, sm.model$fitted, pch=19, col=’red’)

adds the smooth function to the plot

When it comes to commenting code, there are many different
conventions. Some people label blocks of code, some people label
each line, some people only label the unusual lines. Some will put
comments before a set of lines, some will put a comment after or
below each line.

As a place to start, you should add a couple of comments at the
beginning explaining the goal of the analysis, and what’s in the data.
Then comment all of the lines that you can’t just look at and know
what they do. The lines you can’t just "read" should be labeled.

Adequate comments also increase the replicability of your work.
When you share your work, others can more easily read it and know
what you did. If you ever plan to share your work, you should be
writing comments as you write the code. And this is doubly true if
you have collaborators that will need to be able to understand your
analysis.

a “level-zero" tutorial for getting started with r 34

Opening and exporting data in R

Data comes in many different varieties, and now it’s time to learn
how to get it into R so we can work with it.

*.csv and *.txt files

This is one of the most common formats for small to medium data
sets. The data are stored as plain text, separated by commas or tabs.
These files are fairly popular because every statistical software can
open this type of file easily. You can even open them with a text
editor like Notepad or TextEdit. However, storing data as text is not
very efficient in terms of computer memory, so it really is only used
for relatively small data.

Download the dataset from here http://www-bcf.usc.edu/

~gareth/ISL/Advertising.csv, and save it in your LearningR folder.
Its a small data set on advertising expenditures and sales. You can locate data on just about

anything at http://www.Data.gov, but
formatting is highly variable.

First, open it up in a text editor to look at it. A csv will usually
look something like this

"","TV","Radio","Newspaper","Sales"

"1",230.1,37.8,69.2,22.1

"2",44.5,39.3,45.1,10.4

"3",17.2,45.9,69.3,9.3

"4",151.5,41.3,58.5,18.5

"5",180.8,10.8,58.4,12.9

"6",8.7,48.9,75,7.2

"7",57.5,32.8,23.5,11.8

"8",120.2,19.6,11.6,13.2

"9",8.6,2.1,1,4.8

"10",199.8,2.6,21.2,10.6

You can see that the first row contains column labels, and the first
column contains row labels. The columns are separated (delimited)
by commas, and the rows are separated by line breaks. In order to
read the data into R correctly, we need to pay attention to these de-
tails.

To open this data in R, you check your working directory and then
use read.table() read.table()

Imports data in text format into R.

> getwd()

[1] "/path_name/LearningR"

> ?read.table # to look at the help file

starting httpd help server ... done

> ads = read.table(’Advertising.csv’, header=TRUE, sep=’,’)

> head(ads)

X TV Radio Newspaper Sales

1 1 230.1 37.8 69.2 22.1

2 2 44.5 39.3 45.1 10.4

http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv
http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv
http://www.Data.gov

a “level-zero" tutorial for getting started with r 35

3 3 17.2 45.9 69.3 9.3

4 4 151.5 41.3 58.5 18.5

5 5 180.8 10.8 58.4 12.9

6 6 8.7 48.9 75.0 7.2

The header=TRUE option tells read.table that there is a row at the
top with column names, while sep=’,’ indicates that the data is
separated by commas. However, we notice that our new data frame
ads isn’t quite right. We have an extra column in the beginning. It
looks like the row names were read in as an extra variable. To fix
this, we add the option row.names=1 to indicate that the first column
contains row names.

> ads = read.table(’Advertising.csv’, header=TRUE, sep=’,’, row.names=1)

> head(ads)

TV Radio Newspaper Sales

1 230.1 37.8 69.2 22.1

2 44.5 39.3 45.1 10.4

3 17.2 45.9 69.3 9.3

4 151.5 41.3 58.5 18.5

5 180.8 10.8 58.4 12.9

6 8.7 48.9 75.0 7.2

>

Note that if you don’t store the data in working memory as an R
object, in this case ads, then R will just print out the data frame onto
the screen. For comparison, see what happens when you enter just:

> read.table(’Advertising.csv’, header=TRUE, sep=’,’, row.names=1)

This will read in any plain text file, but for csv files, we get an
extra shortcut. The important thing is not which command you use, read.csv()

Imports data in csv format into R.but rather that the options you give the function match how the data
is recorded in the file.

> ads2 = read.csv(’Advertising.csv’, row.names=1)

> head(ads2)

TV Radio Newspaper Sales

1 230.1 37.8 69.2 22.1

2 44.5 39.3 45.1 10.4

3 17.2 45.9 69.3 9.3

4 151.5 41.3 58.5 18.5

5 180.8 10.8 58.4 12.9

6 8.7 48.9 75.0 7.2

To import an excel file into R, first open the file in excel and
export it to a csv. Then open the csv file in R.

a “level-zero" tutorial for getting started with r 36

To export a csv from R, use the write.csv() function. We’ll take write.csv()

Writes a data frame to a csv file.the iris dataset that we were working with earlier and write it to a
csv in the LearningR folder. So first check your working directory.

> getwd()

[1] "/path_name/LearningR"

> head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

> write.csv(iris, file=’Test_iris.csv’)

>

Look in your working directory and open up Test_iris.csv in a
plain text editor. Make sure everything worked.

*.sav files

Importing and exporting data from SPSS is a bit different. SPSS uses
it’s own proprietary format and so we have to work a little bit harder
to get data in and out of R.

First we need to install and load the foreign package, see the
Packages section.

> library(foreign)

> ?read.spss

> imported.data = read.spss(’filename.sav’, to.data.frame = TRUE)

There are some real idiosyncrasies here, and honestly I would avoid
importing data this way if at all possible. In some ways, it might be
easier to get SPSS to export the data to a csv, and then import the csv
into R.

Packages

One of the best things about R is that it is open source and easily
extended. These days, it’s pretty common for statistics researchers
to put together and share an R package to go with the new methods
they develop. So if there’s any method you want to use, there is
almost certainly an R package or two or three that will do it.

Here, we’ll install and load a package that will fit a Gaussian mix-
ture model, often used for clustering, mclust. There is a command

a “level-zero" tutorial for getting started with r 37

line option for installing packages, but this is one thing it’s much eas-
ier to do with the drop down menus. Find the menu option for the
package installer, as in Figure 15. That should open up the window
for the installer, shown in Figure 16.

Figure 15: Location for the package
installer menu option on Macs.

Figure 16: The package installer win-
dow.

First, click the Get List button to bring up the list of available
packages. You can try scrolling through, but you will find that the
list is very long and the names don’t really tell you much on their
own. Use the search bar to find the package that you’re looking for,
in this case mclust. Highlight the package you want to install. Before

a “level-zero" tutorial for getting started with r 38

you click Install Selected, I recommend selecting 2 options. First,
go ahead and install the packages at the system level where you
installed R. Second, click install dependencies. Some packages
make use of other packages, so you usually want to install these
"dependencies" so everything will work correctly. When the package
is installed, the version number for the installed version will appear,
if it matches the repository version number, then you’re up to date.

Now to check out what’s in the package and be able to use the
new functions, we need to load the package. One of the main func-
tions in the package is Mclust, note that if we try to look at the help
file for it before we load the package, we get an error.

> ?Mclust

No documentation for ’Mclust’ in specified packages and libraries:

you could try ’??Mclust’

> library(mclust)

Package ’mclust’ version 4.2

>

> ?Mclust

starting httpd help server ... done

You can look at the documentation for the whole package, includ-
ing the list of all the functions in the package in a couple of ways.
First, scroll all the way down to the bottom of the Mclust help file,
and click on the index link. Second, use the package manager.

Congratulations

Lastly, just remember that google is your friend. R is open source,
so any question you have has probably already been asked and an-
swered on some forum somewhere.

	Downloading and Installing R
	Opening R for the First Time
	Working Memory
	Types of R objects
	Functions and "Help" Files
	Plotting Data
	Organizing and Saving Work in R
	Opening and exporting data in R
	Packages
	Congratulations

